51 research outputs found

    Interplay between topological insulators and superconductors

    Get PDF
    Topological insulators are insulating in the bulk but possess metallic surface states protected by time-reversal symmetry. Here, we report on a detailed electronic transport study in high-quality Bi 2Se 3 topological insulator thin films contacted by superconducting (In, Al, and W) electrodes. The resistance of the film shows an abrupt and significant upturn when the electrodes become superconducting. In turn, the Bi 2Se 3 film greatly weakens the superconductivity of the electrodes, significantly reducing both their transition temperatures and their critical fields. A possible interpretation of these results is that the superconducting electrodes are accessing the surface states and the experimental results are consequences of the interplay between the Cooper pairs of the electrodes and the spin-polarized current of the surface states in Bi 2Se 3. © 2012 American Physical Society.published_or_final_versio

    Purification and preliminary characterization of a xylanase from Thermomyces lanuginosus strain SS-8

    Get PDF
    Thermomyces lanuginosus SS-8 was isolated from soil samples that had been collected from near self-heating plant material and its extracellular cellulase-free xylanase purified approximately 160-fold using ion exchange chromatography and continuous elution electrophoresis. This xylanase was thermoactive (optimum temperature 60 °C) at pH 6.0 and had a molecular weight of 23.79 kDa as indicated by SDS-PAGE electrophoresis. The xylanase rapidly hydrolyzed xylan directly to xylose without the production of intermediary xylo-oligosaccharides within 15 min of incubation under optimum conditions. This trait of rapidly degrading xylan to xylose as a sole end-product could have biotechnological potential in degradation of agro-wastes for bioethanol manufacturing industry

    Spin-Dependent Transport in Fe/GaAs(100)/Fe Vertical Spin-Valves

    Get PDF
    The integration of magnetic materials with semiconductors will lead to the development of the next spintronics devices such as spin field effect transistor (SFET), which is capable of both data storage and processing. While the fabrication and transport studies of lateral SFET have attracted greatly attentions, there are only few studies of vertical devices, which may offer the opportunity for the future three-dimensional integration. Here, we provide evidence of two-terminal electrical spin injection and detection in Fe/GaAs/Fe vertical spin-valves (SVs) with the GaAs layer of 50 nanometers thick and top and bottom Fe electrodes deposited by molecular beam epitaxy. The spin-valve effect, which corresponds to the individual switching of the top and bottom Fe layers, is bias dependent and observed up to 20 K. We propose that the strongly bias-and temperature-dependent MR is associated with spin transport at the interfacial Fe/GaAs Schottky contacts and in the GaAs membranes, where balance between the barrier profiles as well as the dwell time to spin lifetime ratio are crucial factors for determining the device operations. The demonstration of the fabrication and spin injection in the vertical SV with a semiconductor interlayer is expected to open a new avenue in exploring the SFET

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Ordered versus random nucleation of InN islands grown by molecular beam epitaxy

    No full text
    Self-organization of two-dimensional InN nucleation islands into chains along the 112̄0 directions is revealed by scanning tunneling microscopy (STM). Such alignments occur on surfaces of InN(0001) with GaN insertion layers below, i.e., in InN/GaN/InN sandwich-structures. Increasing the temperature of nucleation leads to a reduced degree of ordering of the islands. For nucleation on surfaces of homogeneous and strain-free InN films, on the other hand, randomly distributed islands are observed. The possible origin of the island-chain formation is discussed. © 2011 Elsevier B.V. All rights reserved.link_to_subscribed_fulltex

    Kinetic energy barriers on the GaN(0001) surface: A nucleation study by scanning tunneling microscopy

    No full text
    Island nucleation of GaN on its (0001) surface is studied by scanning tunneling microscopy. A comparison is made between surfaces with and without excess Ga and among surfaces with different excess Ga coverages. Evidence is provided for the change of step characteristics of GaN(0001) by excess Ga adlayers, where the Ehrlich-Schwoebel effect is seen to be mediated by excess Ga coverage. For single Ga adlayer covered GaN(0001) surfaces, nucleation island densities are evaluated, which are used to derive the kinetic barriers of adatom diffusion on a terrace. A barrier of less than 1 eV is obtained for the system, and the Ga adlayers make GaN growth surfactant mediated. © 2008 The American Physical Society.link_to_subscribed_fulltex

    Wetting of GaN islands by excess Ga: Origin of different appearances of GaN islands in scanning tunneling microscopy

    No full text
    We observe three different kinds of islands, namely the "bare," "ghost," and "normal" islands, by scanning tunneling microscopy of GaN(0001) prepared under Ga-rich conditions with different excess Ga coverage. They correlate to three different growth regimes. The various morphologies of the islands are suggested to be due to different states of wetting of the surface by excess Ga. The dynamical behavior of the wetting process is followed, and an island size dependence of Ga wetting is noted. © 2007 The American Physical Society.link_to_subscribed_fulltex

    Kinetics of mesa overlayer growth: Climbing of adatoms onto the mesa top

    No full text
    We have calculated the energy barriers for an adatom climbing up onto a Pb mesa top either over a facet-facet edge or through a facet-step joint, using a modified embedded atom method. We found that the second process is not only thermodynamically more favorable than the first one but also much faster with a diminishing barrier. Our results provide a plausible explanation for the experimentally observed intriguing growth behavior of a Pb mesa. The underlying mechanisms can be generally applicable to other systems. (c) 2008 American Institute of Physics.11sciescopu
    corecore