15 research outputs found

    S28 peptidases: lessons from a seemingly 'dysfunctional' family of two

    Get PDF
    <p>Abstract</p> <p>A recent paper in <it>BMC Structural Biology </it>reports the crystal structure of human prolylcarboxypeptidase (PRCP), one of the two members of the S28 peptidase family. Comparison of the substrate-binding site of PRCP with that of its family partner, dipeptidyl dipeptidase 7 (DPP7), helps to explain the different enzymatic activities of these structurally similar proteins, and also reveals a novel apparent charge-relay system in PRCP involving the active-site catalytic histidine.</p> <p>See research article: <url>http://www.biomedcentral.com/1472-6807/10/16/</url></p> <p>Commentary</p> <p>The S28 serine peptidase family is something of an enzymatic odd couple. While showing low sequence similarity to all proteins except each other, the two known family members appear to be at odds functionally; one, prolylcarboxypeptidase (PRCP), is a carboxypeptidase that cleaves single hydrophobic residues from the carboxyl termini of proteins that end with a Pro-X motif (where X is any hydrophobic amino acid), while the other, human dipeptidyl peptidase (DPP7), is an aminopeptidase that cleaves amino-terminal X-Pro dipeptides. The structural basis of this orthogonal specificity would undoubtedly be interesting, and a recent report in <it>BMC Structural Biology </it>from the Merck Global Structural Biology group (Soisson <it>et al</it>. <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>) has now met that expectation. In addition they reveal a new wrinkle to the iconic catalytic triad common to most serine hydrolases.</p> <p>The practical pharmaceutical interest in both these enzymes as potential drug targets is at present speculative. PRCP can inactivate a number of peptide hormones, such as angiotensin II, III and prekallikrein, implicating a role for the enzyme in hypertension, tissue proliferation and smooth-muscle growth. These properties suggest that this enzyme may well be a useful target for hypertension and anti-inflammatory therapy <abbrgrp><abbr bid="B2">2</abbr></abbrgrp>. Another (non-S28 family) dipeptidyl dipeptidase (DPP4) is a major drug target in type 2 diabetes, and Merck has already developed a successful inhibitor of DPP4, the anti-hyperglycemic drug sitagliptin, for the treatment of type 2 diabetes. The DPP enzymes are rich in biological functions and other drug targets emerging from the group are possible <abbrgrp><abbr bid="B3">3</abbr></abbrgrp>.</p

    Cardiovascular Toxicity of Tyrosine Kinase Inhibitors in Patients with Chronic Myeloid Leukemia

    Get PDF
    In the present review the cardiovascular complications in patients with chronic myeloid leukemia (CML) receiving tyrosine kinase inhibitors (TKI) are discussed. It covers current views on pathogenesis of TKI cardiovascular toxicity. The pathophysiology of cardiovascular diseases (CVD) is considered as a part of the so-called pathophysiological continuum, i.e. a complex of processes developing at the molecular and cellular levels before clinical symptoms of the above diseases occur. Cardiovascular toxicity of certain TKIs can contribute to progression of pathophysiological processes in CML patients. The study of mechanisms underlying cardiovascular complications of TKI-based therapy is essential for evaluating the risks of their development in each patient. Identification of CVD predictors during TKI-based therapy can allow to elaborate a scheme for cardiovascular monitoring and safe patient management under consideration of individual risks and to avoid severe life-threatening complications

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore