41 research outputs found
Extracting science from surveys of our Galaxy
Our knowledge of the Galaxy is being revolutionised by a series of
photometric, spectroscopic and astrometric surveys. Already an enormous body of
data is available from completed surveys, and data of ever increasing quality
and richness will accrue at least until the end of this decade. To extract
science from these surveys we need a class of models that can give probability
density functions in the space of the observables of a survey -- we should not
attempt to "invert" the data from the space of observables into the physical
space of the Galaxy. Currently just one class of model has the required
capability, so-called "torus models". A pilot application of torus models to
understanding the structure of the Galaxy's thin and thick discs has already
produced two significant results: a major revision of our best estimate of the
Sun's velocity with respect to the Local Standard of Rest, and a successful
prediction of the way in which the vertical velocity dispersion in the disc
varies with distance from the Galactic plane.Comment: 13 pages. Invited review to appear in Pramana - journal of physics
(Indian Academy of Sciences
Relativistic Dynamics and Extreme Mass Ratio Inspirals
It is now well-established that a dark, compact object (DCO), very likely a
massive black hole (MBH) of around four million solar masses is lurking at the
centre of the Milky Way. While a consensus is emerging about the origin and
growth of supermassive black holes (with masses larger than a billion solar
masses), MBHs with smaller masses, such as the one in our galactic centre,
remain understudied and enigmatic. The key to understanding these holes - how
some of them grow by orders of magnitude in mass - lies in understanding the
dynamics of the stars in the galactic neighbourhood. Stars interact with the
central MBH primarily through their gradual inspiral due to the emission of
gravitational radiation. Also stars produce gases which will subsequently be
accreted by the MBH through collisions and disruptions brought about by the
strong central tidal field. Such processes can contribute significantly to the
mass of the MBH and progress in understanding them requires theoretical work in
preparation for future gravitational radiation millihertz missions and X-ray
observatories. In particular, a unique probe of these regions is the
gravitational radiation that is emitted by some compact stars very close to the
black holes and which could be surveyed by a millihertz gravitational wave
interferometer scrutinizing the range of masses fundamental to understanding
the origin and growth of supermassive black holes. By extracting the
information carried by the gravitational radiation, we can determine the mass
and spin of the central MBH with unprecedented precision and we can determine
how the holes "eat" stars that happen to be near them.Comment: Update from the first version, 151 pages, accepted for publication @
Living Reviews in Relativit
Dark Matter in the Milky Way's Dwarf Spheroidal Satellites
The Milky Way's dwarf spheroidal satellites include the nearest, smallest and
least luminous galaxies known. They also exhibit the largest discrepancies
between dynamical and luminous masses. This article reviews the development of
empirical constraints on the structure and kinematics of dSph stellar
populations and discusses how this phenomenology translates into constraints on
the amount and distribution of dark matter within dSphs. Some implications for
cosmology and the particle nature of dark matter are discussed, and some
topics/questions for future study are identified.Comment: A version with full-resolution figures is available at
http://www.cfa.harvard.edu/~mwalker/mwdsph_review.pdf; 70 pages, 22 figures;
invited review article to be published in Vol. 5 of the book "Planets, Stars,
and Stellar Systems", published by Springe
Pan-cancer analysis of whole genomes
Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
Resolving the disc-halo degeneracy II: NGC 6946
The mass-to-light ratio (M/L) is a key parameter in decomposing galactic rotation curves into contributions from the baryonic components and the dark halo of a galaxy. One direct observational method to determine the disc M/L is by calculating the surface mass density of the disc from the stellar vertical velocity dispersion and the scale height of the disc. Usually, the scale height is obtained from near-IR studies of edge-on galaxies and pertains to the older, kinematically hotter stars in the disc, while the vertical velocity dispersion of stars is measured in the optical band and refers to stars of all ages (up to ∼ 10 Gyr) and velocity dispersions. This mismatch between the scale height and the velocity dispersion can lead to underestimates of the disc surface density and a misleading conclusion of the sub-maximality of galaxy discs. In this paper we present the study of the stellar velocity dispersion of the disc galaxy NGC 6946 using integrated star light and individual planetary nebulae as dynamical tracers. We demonstrate the presence of two kinematically distinct populations of tracers which contribute to the total stellar velocity dispersion. Thus, we are able to use the dispersion and the scale height of the same dynamical population to derive the surface mass density of the disc over a radial extent. We find the disc of NGC 6946 to be closer to maximal with the baryonic component contributing most of the radial gravitational field in the inner parts of the galaxy (Vmax(bar)=0.76(±0.14)Vmax)