16 research outputs found

    Development and validation of creatinine-based estimates of the Glo- Merular Filtration rate equation from Chromium Edta Imaging in the multi-racial Malaysian population

    Get PDF
    Background Glomerular filtration rate (GFR) is a reliable parameter for assessing kidney function. It is estimated from equations such as Cockcroft–Gault (CG), Modification of Diet in Renal Disease (MDRD), and Chronic Kidney Disease- Epidemiology Collaboration (CKD-EPI). However, these equations were derived using Western population demo- graphic data and had different performances when applied to other populations. Objectives. We developed a new equation (NE) based on the 51Cr EDTA measured GFR that can be used explicitly in the Malaysian multiracial population. Methods This was a cross-sectional study using the Electronic Medical Record (EMR) of pa- tients who underwent 51Cr-EDTA imaging at the Nuclear Medicine Centre, University Malaya Medical Centre (UMMC), from 2013 to 2021. This study had obtained approval from the Medical Research Ethics Committee, UMMC. Results Total data of 209 patients were recruited in this study. 105 were randomised in the development cohort, while 104 were in the validation cohort. A NE was developed based on data in the development cohort and then tested its performance in the validation cohort. The result showed that CKD-EPI had the highest correlation to 51Cr EDTA imaging measured GFR (r-value 0.82), followed by the NE (r-value 0.76). CG had the lowest bias (mean bias of 2.49), followed by the NE (mean bias of 3.52). CKD-EPI had the highest precision in estimating GFR (SD of 22.04ml/min), followed by the NE (SD of 25.05ml/min). CKD-EPI also had the highest accuracy (85.58% in P30 and 100% in P50, followed by MDRD (81.73% in P30 and 96.15% in P50). Conclusion The NE was less accurate than CKD-EPI and MDRD equation but generally has a rel- atively low bias of 3.52 ml/min. The limitation of the small sample size may limit the accuracy of the NE. Future studies with a larger sample size are needed to generate a more robust equation

    A novel series of compositionally biased substitution matrices for comparing Plasmodium proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The most common substitution matrices currently used (BLOSUM and PAM) are based on protein sequences with average amino acid distributions, thus they do not represent a fully accurate substitution model for proteins characterized by a biased amino acid composition. This problem has been addressed recently by adjusting existing matrices, however, to date, no empirical approach has been taken to build matrices which offer a substitution model for comparing proteins sharing an amino acid compositional bias. Here, we present a novel procedure to construct series of symmetrical substitution matrices to align proteins from similarly biased <it>Plasmodium </it>proteomes.</p> <p>Results</p> <p>We generated substitution matrices by selecting from the BLOCKS database those multiple alignments with a compositional bias similar to that of <it>P. falciparum </it>and <it>P. yoelii </it>proteins. A novel 'fuzzy' clustering method was adopted to group sequences within these alignments, showing that this method retains more complete information on the amino acid substitutions when compared to hierarchical clustering. We assessed the performance against the BLOSUM62 series and showed that the usage of our matrices results in an improvement in the performance of BLAST database searches, greatly reducing the number of false positive hits. We then demonstrated applications of the use of novel matrices to improve the annotation of homologs between the two <it>Plasmodium </it>species and to classify members of the <it>P. falciparum </it>RIFIN/STEVOR family.</p> <p>Conclusion</p> <p>We confirmed that in the case of compositionally biased proteins, standard BLOSUM matrices are not suited for optimal alignments, and specific substitution matrices are required. In addition, we showed that the usage of these matrices leads to a reduction of false positive hits, facilitating the automatic annotation process.</p

    Is the meiofauna a good indicator for climate change and anthropogenic impacts?

    Get PDF
    Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Thigh-length compression stockings and DVT after stroke

    Get PDF
    Controversy exists as to whether neoadjuvant chemotherapy improves survival in patients with invasive bladder cancer, despite randomised controlled trials of more than 3000 patients. We undertook a systematic review and meta-analysis to assess the effect of such treatment on survival in patients with this disease
    corecore