59 research outputs found

    Visualization of Early Events in Acetic Acid Denaturation of HIV-1 Protease: A Molecular Dynamics Study

    Get PDF
    Protein denaturation plays a crucial role in cellular processes. In this study, denaturation of HIV-1 Protease (PR) was investigated by all-atom MD simulations in explicit solvent. The PR dimer and monomer were simulated separately in 9 M acetic acid (9 M AcOH) solution and water to study the denaturation process of PR in acetic acid environment. Direct visualization of the denaturation dynamics that is readily available from such simulations has been presented. Our simulations in 9 M AcOH reveal that the PR denaturation begins by separation of dimer into intact monomers and it is only after this separation that the monomer units start denaturing. The denaturation of the monomers is flagged off by the loss of crucial interactions between the α-helix at C-terminal and surrounding β-strands. This causes the structure to transit from the equilibrium dynamics to random non-equilibrating dynamics. Residence time calculations indicate that denaturation occurs via direct interaction of the acetic acid molecules with certain regions of the protein in 9 M AcOH. All these observations have helped to decipher a picture of the early events in acetic acid denaturation of PR and have illustrated that the α-helix and the β-sheet at the C-terminus of a native and functional PR dimer should maintain both the stability and the function of the enzyme and thus present newer targets for blocking PR function

    Transcription Profiling of Epstein-Barr Virus Nuclear Antigen (EBNA)-1 Expressing Cells Suggests Targeting of Chromatin Remodeling Complexes

    Get PDF
    The Epstein-Barr virus (EBV) encoded nuclear antigen (EBNA)-1 regulates virus replication and transcription, and participates in the remodeling of the cellular environment that accompanies EBV induced B-cell immortalization and malignant transformation. The putative cellular targets of these effects of EBNA-1 are largely unknown. To address this issue we have profiled the transcriptional changes induced by short- and long-term expression of EBNA-1 in the EBV negative B-cell lymphoma BJAB. Three hundred and nineteen cellular genes were regulated in a conditional transfectant shortly after EBNA-1 induction while a ten fold higher number of genes was regulated upon continuous EBNA-1 expression. Promoter analysis of the differentially regulated genes demonstrated a significant enrichment of putative EBNA-1 binding sites suggesting that EBNA-1 may directly influence the transcription of a subset of genes. Gene ontology analysis of forty seven genes that were consistently regulated independently on the time of EBNA-1 expression revealed an unexpected enrichment of genes involved in the maintenance of chromatin architecture. The interaction network of the affected gene products suggests that EBNA-1 may promote a broad rearrangement of the cellular transcription landscape by altering the expression of key components of chromatin remodeling complexes

    Identification of Common Differentially Expressed Genes in Urinary Bladder Cancer

    Get PDF
    BACKGROUND: Current diagnosis and treatment of urinary bladder cancer (BC) has shown great progress with the utilization of microarrays. PURPOSE: Our goal was to identify common differentially expressed (DE) genes among clinically relevant subclasses of BC using microarrays. METHODOLOGY/PRINCIPAL FINDINGS: BC samples and controls, both experimental and publicly available datasets, were analyzed by whole genome microarrays. We grouped the samples according to their histology and defined the DE genes in each sample individually, as well as in each tumor group. A dual analysis strategy was followed. First, experimental samples were analyzed and conclusions were formulated; and second, experimental sets were combined with publicly available microarray datasets and were further analyzed in search of common DE genes. The experimental dataset identified 831 genes that were DE in all tumor samples, simultaneously. Moreover, 33 genes were up-regulated and 85 genes were down-regulated in all 10 BC samples compared to the 5 normal tissues, simultaneously. Hierarchical clustering partitioned tumor groups in accordance to their histology. K-means clustering of all genes and all samples, as well as clustering of tumor groups, presented 49 clusters. K-means clustering of common DE genes in all samples revealed 24 clusters. Genes manifested various differential patterns of expression, based on PCA. YY1 and NFκB were among the most common transcription factors that regulated the expression of the identified DE genes. Chromosome 1 contained 32 DE genes, followed by chromosomes 2 and 11, which contained 25 and 23 DE genes, respectively. Chromosome 21 had the least number of DE genes. GO analysis revealed the prevalence of transport and binding genes in the common down-regulated DE genes; the prevalence of RNA metabolism and processing genes in the up-regulated DE genes; as well as the prevalence of genes responsible for cell communication and signal transduction in the DE genes that were down-regulated in T1-Grade III tumors and up-regulated in T2/T3-Grade III tumors. Combination of samples from all microarray platforms revealed 17 common DE genes, (BMP4, CRYGD, DBH, GJB1, KRT83, MPZ, NHLH1, TACR3, ACTC1, MFAP4, SPARCL1, TAGLN, TPM2, CDC20, LHCGR, TM9SF1 and HCCS) 4 of which participate in numerous pathways. CONCLUSIONS/SIGNIFICANCE: The identification of the common DE genes among BC samples of different histology can provide further insight into the discovery of new putative markers

    Systematic review regarding metabolic profiling for improved pathophysiological understanding of disease and outcome prediction in respiratory infections

    Full text link

    Prediction of diabetic retinopathy: role of oxidative stress and relevance of apoptotic biomarkers

    Full text link

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Not Available

    No full text
    Not AvailableBluetongue (BT) is a Culicoides-borne disease caused by several serotypes of bluetongue virus (BTV). Similar to other insect-borne viral diseases, distribution of BT is limited to distribution of Culicoides species competent to transmit BTV. In the tropics, vector activity is almost year long, and hence, the disease is endemic, with the circulation of several serotypes of BTV, whereas in temperate areas, seasonal incursions of a limited number of serotypes of BTV from neighbouring tropical areas are observed. Although BTV is endemic in all the three major tropical regions (parts of Africa, America and Asia) of the world, the distribution of serotypes is not alike. Apart from serological diversity, geography-based diversity of BTV genome has been observed, and this is the basis for proposal of topotypes. However, evolution of these topotypes is not well understood. In this study, we report the isolation and characterization of several BTV-4 isolates from India. These isolates are distinct from BTV-4 isolates from other geographical regions. Analysis of available BTV seg-2 sequences indicated that the Australasian BTV-4 diverged from African viruses around 3,500 years ago, whereas the American viruses diverged relatively recently (1,684 CE). Unlike Australasia and America, BTV-4 strains of the Mediterranean area evolved through several independent incursions. We speculate that independent evolution of BTV in different geographical areas over long periods of time might have led to the diversity observed in the current virus population.Not Availabl
    corecore