186 research outputs found

    How caldera collapse shapes the shallow emplacement and transfer of magma in active volcanoes

    Get PDF
    Calderas are topographic depressions formed by the collapse of a partly drained magma reservoir. At volcanic edifices with calderas, eruptive fissures can circumscribe the outer caldera rim, be oriented radially and/or align with the regional tectonic stress field. Constraining the mechanisms that govern this spatial arrangement is fundamental to understand the dynamics of shallow magma storage and transport and evaluate volcanic hazard. Here we show with numerical models that the previously unappreciated unloading effect of caldera formation may contribute significantly to the stress budget of a volcano. We first test this hypothesis against the ideal case of Fernandina, Galápagos, where previous models only partly explained the peculiar pattern of circumferential and radial eruptive fissures and the geometry of the intrusions determined by inverting the deformation data. We show that by taking into account the decompression due to the caldera formation, the modeled edifice stress field is consistent with all the observations. We then develop a general model for the stress state at volcanic edifices with calderas based on the competition of caldera decompression, magma buoyancy forces and tectonic stresses. These factors control: 1) the shallow accumulation of magma in stacked sills, consistently with observations; 2) the conditions for the development of circumferential and/or radial eruptive fissures, as observed on active volcanoes. This top-down control exerted by changes in the distribution of mass at the surface allows better understanding of how shallow magma is transferred at active calderas, contributing to forecasting the location and type of opening fissures

    The Mount Perkins block, northwestern Arizona: An exposed cross section of an evolving, preextensional to synextensional magmatic system

    Get PDF
    This is the published version. Reuse is subject to Society of Exploration Geophysicists terms of use and conditions.The steeply tilted Mount Perkins block, northwestern Arizona, exposes a cross section of a magmatic system that evolved through the onset of regional extension. New 40Ar/39Ar ages of variably tilted (0–90°) volcanic strata bracket extension between 15.7 and 11.3 Ma. Preextensional intrusive activity included emplacement of a composite Miocene laccolith and stock, trachydacite dome complex, and east striking rhyolite dikes. Related volcanic activity produced an ∼18–16 Ma stratovolcano, cored by trachydacite domes and flanked by trachydacite-trachyandesite flows, and ∼16 Ma rhyolite flows. Similar compositions indicate a genetic link between the stratovolcano and granodioritic phase of the laccolith. Magmatic activity synchronous with early regional extension (15.7–14.5 Ma) generated a thick, felsic volcanic sequence, a swarm of northerly striking subvertical rhyolite dikes, and rhyolite domes. Field relations and compositions indicate that the dike swarm and felsic volcanic sequence are cogenetic. Modes of magma emplacement changed during the onset of extension from subhorizontal sheets, east striking dikes, and stocks to northerly striking, subvertical dike swarms, as the regional stress field shifted from nearly isotropic to decidedly anisotropic with an east-west trending, horizontal least principal stress. Preextensional trachydacitic and preextensional to synextensional rhyolitic magmas were part of an evolving system, which involved the ponding of mantle-derived basaltic magmas and ensuing crustal melting and assimilation at progressively shallower levels. Major extension halted this system by generating abundant pathways to the surface (fractures), which flushed out preexisting crustal melts and hybrid magmas. Remaining silicic melts were quenched by rapid, upper crustal cooling induced by tectonic denudation. These processes facilitated eruption of mafic magmas. Accordingly, silicic magmatism at Mount Perkins ended abruptly during peak extension ∼14.5 Ma and gave way to mafic magmatism, which continued until extension ceased

    Proper application of antibodies for immunohistochemical detection: antibody crimes and how to prevent them

    Get PDF
    For several decades antibodies raised against specific proteins, peptides, or peptide epitopes have proven to be versatile and very powerful tools to demonstrate molecular identity in cells and tissues. New techniques of immunohistochemistry and immunofluorescence have improved both the optical resolution of such protein identification as well as its sensitivity, particularly through the use of amplification methodology. However, this improved sensitivity has also increased the risks of false-positive and false-negative staining and thereby raised the necessity for proper and adequate controls. In this review, the authors drawonmanyyears of experience to illuminate many of the more common errors and problematic issues in immunohistochemistry, and how these may be avoided. A key factor in all of this is that techniques need to be properly documented and especially antibodies and procedures must be adequately described. Antibodies are a valuable and shared resource within the scientific community; it is essential therefore that mistakes involving antibodies and their controls are not perpetuated through inadequate reporting in the literature

    Quality of life and home enteral tube feeding: a French prospective study in patients with head and neck or oesophageal cancer

    Get PDF
    A prospective study was conducted to evaluate the impact of home enteral tube feeding on quality of life in 39 consecutive patients treated for head and neck or oesophageal cancer at the Centre François Baclesse in Caen, France. Patients were taken as their own controls. Quality of life was evaluated using the EORTC QLQ-C30 core questionnaire, and the EORTC H&N35 and OES24 specific questionnaires. The feeding technique tolerance was evaluated using a questionnaire specifically developed for this study. Two evaluations were made, the first a week after hospital discharge (n = 39) and the second 3 weeks later (n = 30). Overall, the global health status/quality of life scale score slightly improved; among symptoms, scale scores that significantly improved (P< 0.05) concerned constipation, coughing, social functioning and body image/sexuality. The physical feeding technique tolerance was acceptable while the technique was psychologically less tolerated with two-thirds of the patients longing to have the tube removed. Onethird of the patients was also uncomfortable about their body image. Home enteral tube feeding was responsible for not visiting family or close relations in 15% of patients, and not going out in public in 23%. We conclude that home enteral tube feeding is a physically well accepted technique although a substantial proportion of patients may experience psychosocial distress. © 2000 Cancer Research Campaig

    The role of hydrogen and fuel cells in the global energy system

    Get PDF
    Hydrogen technologies have experienced cycles of excessive expectations followed by disillusion. Nonetheless, a growing body of evidence suggests these technologies form an attractive option for the deep decarb onisation of global energy systems, and that recent improvements in their cost and performance point towards economic viability as well. This paper is a comprehensive review of the potential role that hydrogen could play in the provision of electricity, h eat, industry, transport and energy storage in a low - carbon energy system, and an assessment of the status of hydrogen in being able to fulfil that potential. The picture that emerges is one of qualified promise: hydrogen is well established in certain nic hes such as forklift trucks, while mainstream applications are now forthcoming. Hydrogen vehicles are available commercially in several countries, and 225,000 fuel cell home heating systems have been sold. This represents a step change from the situation of only five years ago. This review shows that challenges around cost and performance remain, and considerable improvements are still required for hydrogen to become truly competitive. But such competitiveness in the medium - term future no longer seems an unrealistic prospect, which fully justifies the growing interest and policy support for these technologies around the world

    Human matrix metalloproteinases: An ubiquitarian class of enzymes involved in several pathological processes

    Get PDF
    Human matrix metalloproteinases (MMPs) belong to the M10 family of the MA clan of endopeptidases. They are ubiquitarian enzymes, structurally characterized by an active site where a Zn(2+) atom, coordinated by three histidines, plays the catalytic role, assisted by a glutamic acid as a general base. Various MMPs display different domain composition, which is very important for macromolecular substrates recognition. Substrate specificity is very different among MMPs, being often associated to their cellular compartmentalization and/or cellular type where they are expressed. An extensive review of the different MMPs structural and functional features is integrated with their pathological role in several types of diseases, spanning from cancer to cardiovascular diseases and to neurodegeneration. It emerges a very complex and crucial role played by these enzymes in many physiological and pathological processes

    A novel formulation of inhaled sodium cromoglicate (PA101) in idiopathic pulmonary fibrosis and chronic cough: a randomised, double-blind, proof-of-concept, phase 2 trial

    Get PDF
    Background Cough can be a debilitating symptom of idiopathic pulmonary fibrosis (IPF) and is difficult to treat. PA101 is a novel formulation of sodium cromoglicate delivered via a high-efficiency eFlow nebuliser that achieves significantly higher drug deposition in the lung compared with the existing formulations. We aimed to test the efficacy and safety of inhaled PA101 in patients with IPF and chronic cough and, to explore the antitussive mechanism of PA101, patients with chronic idiopathic cough (CIC) were also studied. Methods This pilot, proof-of-concept study consisted of a randomised, double-blind, placebo-controlled trial in patients with IPF and chronic cough and a parallel study of similar design in patients with CIC. Participants with IPF and chronic cough recruited from seven centres in the UK and the Netherlands were randomly assigned (1:1, using a computer-generated randomisation schedule) by site staff to receive PA101 (40 mg) or matching placebo three times a day via oral inhalation for 2 weeks, followed by a 2 week washout, and then crossed over to the other arm. Study participants, investigators, study staff, and the sponsor were masked to group assignment until all participants had completed the study. The primary efficacy endpoint was change from baseline in objective daytime cough frequency (from 24 h acoustic recording, Leicester Cough Monitor). The primary efficacy analysis included all participants who received at least one dose of study drug and had at least one post-baseline efficacy measurement. Safety analysis included all those who took at least one dose of study drug. In the second cohort, participants with CIC were randomly assigned in a study across four centres with similar design and endpoints. The study was registered with ClinicalTrials.gov (NCT02412020) and the EU Clinical Trials Register (EudraCT Number 2014-004025-40) and both cohorts are closed to new participants. Findings Between Feb 13, 2015, and Feb 2, 2016, 24 participants with IPF were randomly assigned to treatment groups. 28 participants with CIC were enrolled during the same period and 27 received study treatment. In patients with IPF, PA101 reduced daytime cough frequency by 31·1% at day 14 compared with placebo; daytime cough frequency decreased from a mean 55 (SD 55) coughs per h at baseline to 39 (29) coughs per h at day 14 following treatment with PA101, versus 51 (37) coughs per h at baseline to 52 (40) cough per h following placebo treatment (ratio of least-squares [LS] means 0·67, 95% CI 0·48–0·94, p=0·0241). By contrast, no treatment benefit for PA101 was observed in the CIC cohort; mean reduction of daytime cough frequency at day 14 for PA101 adjusted for placebo was 6·2% (ratio of LS means 1·27, 0·78–2·06, p=0·31). PA101 was well tolerated in both cohorts. The incidence of adverse events was similar between PA101 and placebo treatments, most adverse events were mild in severity, and no severe adverse events or serious adverse events were reported. Interpretation This study suggests that the mechanism of cough in IPF might be disease specific. Inhaled PA101 could be a treatment option for chronic cough in patients with IPF and warrants further investigation

    Cohort Profile: Post-Hospitalisation COVID-19 (PHOSP-COVID) study

    Get PDF
    corecore