92 research outputs found

    Elicitation of broadly neutralizing HIV-1 antibodies by guiding the immune responses using primary and secondary immunogens

    Get PDF
    Abstract also published in AIDS Research and Human Retroviruses. November 2013, 29(11): A-44. doi:10.1089/aid.2013.1500Poster presentationpublished_or_final_versio

    Default Network Deactivations Are Correlated with Psychopathic Personality Traits

    Get PDF
    Background: The posteromedial cortex (PMC) and medial prefrontal cortex (mPFC) are part of a network of brain regions that has been found to exhibit decreased activity during goal-oriented tasks. This network is thought to support a baseline of brain activity, and is commonly referred to as the ‘‘default network’’. Although recent reports suggest that the PMC and mPFC are associated with affective, social, and self-referential processes, the relationship between these default network components and personality traits, especially those pertaining to social context, is poorly understood. Methodology/Principal Findings: In the current investigation, we assessed the relationship between PMC and mPFC deactivations and psychopathic personality traits using fMRI and a self-report measure. We found that PMC deactivations predicted traits related to egocentricity and mPFC deactivations predicted traits related to decision-making. Conclusions/Significance: These results suggest that the PMC and mPFC are associated with processes involving selfrelevancy and affective decision-making, consistent with previous reports. More generally, these findings suggest a link between default network activity and personality traits

    Involvement of the Intrinsic/Default System in Movement-Related Self Recognition

    Get PDF
    The question of how people recognize themselves and separate themselves from the environment and others has long intrigued philosophers and scientists. Recent findings have linked regions of the ‘default brain’ or ‘intrinsic system’ to self-related processing. We used a paradigm in which subjects had to rely on subtle sensory-motor synchronization differences to determine whether a viewed movement belonged to them or to another person, while stimuli and task demands associated with the “responded self” and “responded other” conditions were precisely matched. Self recognition was associated with enhanced brain activity in several ROIs of the intrinsic system, whereas no differences emerged within the extrinsic system. This self-related effect was found even in cases where the sensory-motor aspects were precisely matched. Control conditions ruled out task difficulty as the source of the differential self-related effects. The findings shed light on the neural systems underlying bodily self recognition

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore