77 research outputs found

    Track D Social Science, Human Rights and Political Science

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138414/1/jia218442.pd

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Magnesium and iron loaded hollow glass microspheres (HGMs) for hydrogen storage

    No full text
    The development of a safe and efficient method for hydrogen storage is essential for the use of hydrogen with fuel cells for vehicular applications. Hollow glass microspheres (HGMs) have characteristics suitable for hydrogen storage and are expected to be a potential hydrogen carrier to be used for energy release applications. The HGMs with 10 -100 mu m diameters, 100-1000 angstrom pore width and 3-8 mu m wall thicknesses are expected to be useful for hydrogen storage. In our research we have prepared HGMs from amber glass powder of particle size 63-75 mu m using flame spheroidisation method. The HGMs samples with magnesium and iron loading were also prepared to improve the heat transfer property and thereby increase the hydrogen storage capacity of the product. The feed glass powder was impregnated with calculated amount of magnesium nitrate hexahydrate salt solution to get 0.2-3.0 wt% Mg loading on HGMs. Required amount of ferrous chloride tetrahydrate solution was mixed thoroughly with the glass feed powder to prepare 0.2-2 wt% Fe loaded HGMs. Characterizations of all the HGMs samples were done using FEG-SEM, ESEM and FTIR techniques. Adsorption of hydrogen on all the Fe and Mg loaded HGMs at 10 bar pressure was conducted at room temperature and at 200 degrees C, for 5 h. The hydrogen adsorption capacity of Fe loaded sample was about 0.56 and 0.21 weight percent for Fe loading 0.5 and 2.0 weight percentage respectively. The magnesium loaded samples showed an increase of hydrogen adsorption from 1.23 to 2.0 weight percentage when the magnesium loading percentage was increased from 0 to 2.0. When the magnesium loading on HGMs was increased beyond 2%, formation of nano-crystals of MgO and Mg was seen on the HGMs leading to pore closure and thereby reduction in hydrogen storage capacity. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved

    Validation of sensor for postoperative positioning with intraocular gas

    No full text
    Frank L Brodie,1 Kelly Y Woo,2 Ashwin Balakrishna,2 Hyuck Choo,2 Robert H Grubbs2 1Department of Ophthalmology, University of California San Francisco, San Francisco, 2Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA Purpose: Surgical repair of retinal attachment or macular hole frequently requires intraocular gas. This necessitates specific postoperative positioning to improve outcomes and avoid complications. However, patients struggle with correct positioning. We have developed a novel sensor to detect the position of the gas bubble in the eye and provide feedback to patients in real time. In this paper, we determine the specificity and sensitivity of our sensor in vitro using a model eye. Methods: We assessed the reliability of our sensor to detect when a gas bubble has deviated off a model retinal break in a model eye. Various bubble sizes representing the intraocular kinetics of sulfur hexafluoride gas and varying degrees of deviation from the correct position were tested using the sensor attached to a mannequin head with a model eye. Results: We recorded 36 data points. The sensor acted appropriately in 33 (91.7%) of them. The sensor triggered the alarm every time the bubble deviated off the break (n=15, sensitivity =100%). However, it triggered the alarm (falsely) 3/21 times when the bubble was correctly positioned over the retinal break (specificity =86%). Conclusion: Our device shows excellent sensitivity (100%) and specificity (86%) in detecting whether intraocular gas is tamponading a retinal break in a model eye. Keywords: postoperative positioning, intraocular gas, vitrectomy, retinal detachment, macular hole, pneumatic retinopex

    Development of carbon dioxide adsorbents using carbon materials prepared from coconut shell

    No full text
    Coconut shell, being a good carbon precursor and having a regular porous structure, was chosen for production of carbonic materials in this work. Metal doping on the coconut char was used to develop catalytic centers for hydrocarbon cracking and thereby obtain a product with good microporosity. Magnesium, calcium, cobalt, copper and nickel doping on the coconut char was done by soaking the coconut char in the aqueous solutions of the respective metal salt and further calcining. The characterization of the product samples was done by the measurement of surface area, adsorption capacity of CO2, N-2, CH4, and SEM analysis. The micro pore area obtained by using CO2 adsorption at 298 K was found to be > 400 m(2)/g for samples prepared from coconut char impregnated with metal. The adsorption capacity of magnesium-doped sample was found to be 98 mg/g, whereas that for a sample prepared from non-impregnated coconut char was 55 mg/g. SEM analysis was conducted to study the morphology and nature of the samples prepared
    corecore