48 research outputs found

    Nature and frequency of respiratory involvement in chronic progressive external ophthalmoplegia

    Get PDF
    Chronic progressive external ophthalmoplegia (CPEO) is a relatively common mitochondrial disorder. Weakness of the extra-ocular, limb girdle and laryngeal muscles are established clinical features. Respiratory muscle involvement however has never been studied systematically, even though respiratory complications are one of the main causes of death. We therefore determined the prevalence and nature of respiratory muscle involvement in 23 patients with genetically confirmed CPEO. The main finding was decreased respiratory muscle strength, both expiratory (76.8% of predicted, p = 0.002) and inspiratory (79.5% of predicted, p = 0.004). Although the inspiratory vital capacity (92.5% of predicted, p = 0.021) and the forced expiratory volume in 1 s (89.3% of predicted, p = 0.002) were below predicted values, both were still within the normal range in the majority of patients. Expiratory weakness was associated with a decreased vital capacity (ρ = 0.502, p = 0.015) and decreased peak expiratory flow (ρ = 0.422, p = 0.045). Moreover, expiratory muscle strength was lower in patients with limb girdle weakness (62.6 ± 26.1% of predicted vs. 98.9 ± 22.5% in patients with normal limb girdle strength, p = 0.003), but was not associated with other clinical features, subjective respiratory complaints, disease severity or disease duration. Since respiratory involvement in CPEO is associated with severe morbidity and mortality, the present data justify periodic assessment of respiratory functions in all CPEO patients

    Preoperative predictors for residual tumor after surgery in patients with ovarian carcinoma

    Get PDF
    Objectives: Suboptimal debulking (>1 cm residual tumor) results in poor survival rates for patients with an advanced stage of ovarian cancer. The purpose of this study was to develop a prediction model, based on simple preoperative parameters, for patients with an advanced stage of ovarian cancer who are at risk of suboptimal cytoreduction despite maximal surgical effort. Methods: Retrospective analysis of 187 consecutive patients with a suspected clinical diagnosis of advanced-stage ovarian cancer undergoing upfront debulking between January 1998 and December 2003. Preoperative parameters were Karnofsky performance status, ascites and serum concentrations of CA 125, hemoglobin, albumin, LDH and blood platelets. The main outcome parameter was residual tumor >1 cm. Univariate and multivariate logistic regression was employed for testing possible prediction models. A clinically applicable graphic model (nomogram) for this prediction was to be developed. Results: Serum concentrations of CA 125 and blood platelets in the group with residual tumor >1 cm were higher in comparison to the optimally cytoreduced group (p 1 cm based on serum levels of CA 125 and albumin was established. Conclusion: Postoperative residual tumor despite maximal surgical effort can be predicted by preoperative CA 125 and serum albumin levels. With a nomogram based on these two parameters, probability of postoperative residual tumor in each individual patient can be predicted. This proposed nomogram may be valuable in daily routine practice for counseling and to select treatment modality. Copyrigh

    Increased chromosomal stability in cultures of ovarian tumours of low malignant potential compared to cystadenomas

    Get PDF
    Cell cultures of ovarian cystadenomas transfected with SV40 large T antigen are not immortal because they invariably reach a phenomenon called crisis, which is triggered in part by telomere attrition. Recovery from crisis may be an integral component of the malignant transformation process. We reported earlier that such ovarian cystadenoma cell cultures undergo severe changes in DNA ploidy as they approach crisis and that such changes are an important determinant of crisis independent of telomere attrition. Here, we show that in sharp contrast to these benign ovarian tumours, the DNA content of ovarian tumours of low malignant potential (LMP) was remarkably stable as they approached crisis, suggesting that telomere attrition was the main determinant of this mortality checkpoint. Lack of a ploidy-based crisis was not due to loss of expression of a functional SV40 large T antigen protein. We conclude that ovarian LMP tumours are characterised by increased numerical chromosomal stability compared to cystadenomas. This might account for the fact that most LMP tumours are diploid or near diploid in vivo. This fundamental difference in chromosomal stability between ovarian cystadenomas and LMP tumours also suggests potential differences in predisposition to progression to malignancy between these two ovarian tumour subtypes

    Skeletal Muscle Differentiation Evokes Endogenous XIAP to Restrict the Apoptotic Pathway

    Get PDF
    Myotube apoptosis occurs normally during muscle development and aging but it can lead to destruction of skeletal muscle in neuromuscular diseases. Therefore, understanding how myotube apoptosis is regulated is important for developing novel strategies for treatment of muscle loss. We investigated the regulation of apoptosis in skeletal muscle and report a striking increase in resistance to apoptosis following differentiation. We find mitotic C2C12 cells (myoblast-like cells) are sensitive to cytosolic cytochrome c microinjection. However, differentiated C2C12 cells (myotube-like cells) and primary myotubes are markedly resistant. This resistance is due to endogenous X-linked inhibitor of apoptotic protein (XIAP). Importantly, the selective difference in the ability of XIAP to block myotube but not myoblast apoptosis is not due to a change in XIAP but rather a decrease in Apaf-1 expression. This decrease in Apaf-1 links XIAP to caspase activation and death. Our findings suggest that in order for myotubes to die, they may degrade XIAP, functionally inactivate XIAP or upregulate Apaf-1. Importantly, we identify a role for endogenous Smac in overcoming XIAP to allow myotube death. However, in postmitotic cardiomyocytes, where XIAP also restricts apoptosis, endogenous Smac was not capable of overcoming XIAP to cause death. These results show that as skeletal muscle differentiate, they become resistant to apoptosis because of the ability of XIAP to regulate caspase activation. The increased restriction of apoptosis in myotubes is presumably important to ensure the long term survival of these postmitotic cells as they play a vital role in the physiology of organisms

    Epithelial-immune cell interplay in primary Sjogren syndrome salivary gland pathogenesis

    Get PDF
    In primary Sjogren syndrome (pSS), the function of the salivary glands is often considerably reduced. Multiple innate immune pathways are likely dysregulated in the salivary gland epithelium in pSS, including the nuclear factor-kappa B pathway, the inflammasome and interferon signalling. The ductal cells of the salivary gland in pSS are characteristically surrounded by a CD4(+) T cell-rich and B cell-rich infiltrate, implying a degree of communication between epithelial cells and immune cells. B cell infiltrates within the ducts can initiate the development of lymphoepithelial lesions, including basal ductal cell hyperplasia. Vice versa, the epithelium provides chronic activation signals to the glandular B cell fraction. This continuous stimulation might ultimately drive the development of mucosa-associated lymphoid tissue lymphoma. This Review discusses changes in the cells of the salivary gland epithelium in pSS (including acinar, ductal and progenitor cells), and the proposed interplay of these cells with environmental stimuli and the immune system. Current therapeutic options are insufficient to address both lymphocytic infiltration and salivary gland dysfunction. Successful rescue of salivary gland function in pSS will probably demand a multimodal therapeutic approach and an appreciation of the complicity of the salivary gland epithelium in the development of pSS. Salivary gland dysfunction is an important characteristic of primary Sjogren syndrome (pSS). In this Review, the authors discuss various epithelial abnormalities in pSS and the mechanisms by which epithelial cell-immune cell interactions contribute to disease development and progression

    Integrating genetics and epigenetics in breast cancer: biological insights, experimental, computational methods and therapeutic potential

    Get PDF

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore