23 research outputs found

    Perspectives on the use of transcriptomics to advance biofuels

    Get PDF
    As a field within the energy research sector, bioenergy is continuously expanding. Although much has been achieved and the yields of both ethanol and butanol have been improved, many avenues of research to further increase these yields still remain. This review covers current research related with transcriptomics and the application of this high-throughput analytical tool to engineer both microbes and plants with the penultimate goal being better biofuel production and yields. The initial focus is given to the responses of fermentative microbes during the fermentative production of acids, such as butyric acid, and solvents, including ethanol and butanol. As plants offer the greatest natural renewable source of fermentable sugars within the form of lignocellulose, the second focus area is the transcriptional responses of microbes when exposed to plant hydrolysates and lignin-related compounds. This is of particular importance as the acid/base hydrolysis methods commonly employed to make the plant-based cellulose available for enzymatic hydrolysis to sugars also generates significant amounts of lignin-derivatives that are inhibitory to fermentative bacteria and microbes. The article then transitions to transcriptional analyses of lignin-degrading organisms, such as Phanerochaete chrysosporium, as an alternative to acid/base hydrolysis. The final portion of this article will discuss recent transcriptome analyses of plants and, in particular, the genes involved in lignin production. The rationale behind these studies is to eventually reduce the lignin content present within these plants and, consequently, the amount of inhibitors generated during the acid/base hydrolysis of the lignocelluloses. All four of these topics represent key areas where transcriptomic research is currently being conducted to identify microbial genes and their responses to products and inhibitors as well as those related with lignin degradation/formation.clos

    Comparative genomic and transcriptomic analysis revealed genetic characteristics related to solvent formation and xylose utilization in Clostridium acetobutylicum EA 2018

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Clostridium acetobutylicum</it>, a gram-positive and spore-forming anaerobe, is a major strain for the fermentative production of acetone, butanol and ethanol. But a previously isolated hyper-butanol producing strain <it>C. acetobutylicum </it>EA 2018 does not produce spores and has greater capability of solvent production, especially for butanol, than the type strain <it>C. acetobutylicum </it>ATCC 824.</p> <p>Results</p> <p>Complete genome of <it>C. acetobutylicum </it>EA 2018 was sequenced using Roche 454 pyrosequencing. Genomic comparison with ATCC 824 identified many variations which may contribute to the hyper-butanol producing characteristics in the EA 2018 strain, including a total of 46 deletion sites and 26 insertion sites. In addition, transcriptomic profiling of gene expression in EA 2018 relative to that of ATCC824 revealed expression-level changes of several key genes related to solvent formation. For example, <it>spo0A </it>and <it>adhEII </it>have higher expression level, and most of the acid formation related genes have lower expression level in EA 2018. Interestingly, the results also showed that the variation in CEA_G2622 (CAC2613 in ATCC 824), a putative transcriptional regulator involved in xylose utilization, might accelerate utilization of substrate xylose.</p> <p>Conclusions</p> <p>Comparative analysis of <it>C. acetobutylicum </it>hyper-butanol producing strain EA 2018 and type strain ATCC 824 at both genomic and transcriptomic levels, for the first time, provides molecular-level understanding of non-sporulation, higher solvent production and enhanced xylose utilization in the mutant EA 2018. The information could be valuable for further genetic modification of <it>C. acetobutylicum </it>for more effective butanol production.</p

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Composite anodes for lithium-ion batteries: status and trends

    No full text

    Recent trends in the graphene-based sensors for the detection of hydrogen peroxide

    No full text

    “Toll-free” pathways for production of type I interferons

    No full text

    A Place to Call Home: Bioengineering Pluripotential Stem Cell Cultures

    No full text

    Elucidating the novel biomarker and therapeutic potentials of High-mobility group box 1 in Subarachnoid hemorrhage: A review

    No full text

    Morphology and ultrastructure of retrovirus particles

    No full text

    Computational enzymology for degradation of chemical warfare agents: promising technologies for remediation processes

    No full text
    corecore