96 research outputs found

    Convex politopes and quantum separability

    Full text link
    We advance a novel perspective of the entanglement issue that appeals to the Schlienz-Mahler measure [Phys. Rev. A 52, 4396 (1995)]. Related to it, we propose an criterium based on the consideration of convex subsets of quantum states. This criterium generalizes a property of product states to convex subsets (of the set of quantum-states) that is able to uncover a new geometrical property of the separability property

    IN SILICO STUDY OF YODIUM LEAF (JATROPHA MULTIFIDA LINN) ACTIVE COMPOUND AS ANTIBIOTIC FOR DIABETIC WOUNDS

    Get PDF
    Objective: In this study, an in silico test of 13 active compounds of leaf Jatropha multifida Linn. was carried out against the gyrase receptor (PDB ID: 2XCT). Methods: The methods include molecular docking, ADMET prediction, and a review of Lipinski's Rule of Five. Results: Molecular docking simulation results obtained three test compounds with free energy of binding (∆G) and inhibition constants (Ki) at active site A, which are lower than the comparison compound, ciprofloxacin (∆G-5.41 kcal/mol). The three compounds are C2 (multidione), C5 (citlalitrione), and C6 (cleomiscosin A) which have ΔG of-6.00,-6.90, and-5.56 kcal/mol. Based on ADMET prediction, compound C5 has better pharmacokinetics, pharmacodynamics, and toxic activities compared to ciprofloxacin. Conclusion: Therefore, C5 is the best active compound from J. multifida, which can be used as a candidate for new antibiotics in the treatment of diabetic wounds

    On the lattice structure of probability spaces in quantum mechanics

    Full text link
    Let C be the set of all possible quantum states. We study the convex subsets of C with attention focused on the lattice theoretical structure of these convex subsets and, as a result, find a framework capable of unifying several aspects of quantum mechanics, including entanglement and Jaynes' Max-Ent principle. We also encounter links with entanglement witnesses, which leads to a new separability criteria expressed in lattice language. We also provide an extension of a separability criteria based on convex polytopes to the infinite dimensional case and show that it reveals interesting facets concerning the geometrical structure of the convex subsets. It is seen that the above mentioned framework is also capable of generalization to any statistical theory via the so-called convex operational models' approach. In particular, we show how to extend the geometrical structure underlying entanglement to any statistical model, an extension which may be useful for studying correlations in different generalizations of quantum mechanics.Comment: arXiv admin note: substantial text overlap with arXiv:1008.416

    Failure mechanisms in alloy of polyamide 6,6/polyphenylene oxide under severe conditions

    Full text link
    Toughening mechanisms of a polyamide 6,6/polyphenylene oxide alloy containing an elastomer tested under a slow rate, an impact rate, and a low temperature have been investigated using various microscopy techniques. It is found that the toughening mechanisms of the alloy may change from crazing/shear yielding, to crack bridging/crazing, and to transparticle failure, depending on the testing conditions. Except for the low temperature high strain rate testing condition and in the plane stress region of the crack, the crazing mechanism has been observed in all the conditions we studied. When the testing rate is high, the shear yielding mechanism is suppressed; multiple crazing and particle bridging mechanisms appear to dominate.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44700/1/10853_2004_Article_BF00557130.pd

    Possible phase transformation toughening of thermoset polymers by poly(butylene terephthalate)

    Full text link
    Mechanisms were explored by which particles of poly(butylene terephthalate) (PBT) are able to toughen a brittle epoxy. The epoxy studied was an aromatic amine-cured diglycidyl ether of bisphenol-A, which was toughened at about twice the rate with particles of poly(butylene terephthalate) as with particles of nylon 6, poly(vinylidene fluoride), or CTBN rubber. Many of the mechanisms of toughening are visible on the fracture surface of the PBT-epoxy blend, but a mechanism suggested to account for perhaps half of the increased toughness with PBT, phase transformation toughening, is not. The two types of experiment performed to detect phase transformation toughening were: (1) measurements of the rubber cavitation zone in PBT-CTBN rubber-epoxy ternary blends, which would detect an expansion of the PBT particles during fracture if it occurred, and (2) measurements of the fracture energy in PBT-epoxy blends in which the various mechanisms of toughening were selectively suppressed. Both types of experiment indicated the occurrence of phase transformation toughening in these PBT-epoxy blends.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44711/1/10853_2005_Article_BF01154110.pd

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF
    • 

    corecore