50 research outputs found

    The gain and noise figure of Yb–Er-codoped fiber amplifiers based on the temperature-dependent model

    Get PDF
    A novel temperature-dependent model for Yb3+–Er3+-codoped fiber amplifier (EYDFA) based on the energy transfer from Yb3+ to Er3+ is established. Using appropriate fiber and energy transfer parameters, the coupled rate equations is numerically solved at 25 and 40 °C. The pumping powers are 100 and 200 mW at a pump wavelength of 1060 nm. The signal gain and noise characteristics of a 0.3 m erbium/ytterbium co-doped fiber (EYDF) in a single-pass configuration are investigated by using 1, 10 and 100 μW signals at 1535 nm. A maximum signal gain of 40.5 dB and a corresponding noise figure of 3.65 dB at the temperature of 25 °C are achieved

    Sex differences in oncogenic mutational processes

    Get PDF
    Sex differences have been observed in multiple facets of cancer epidemiology, treatment and biology, and in most cancers outside the sex organs. Efforts to link these clinical differences to specific molecular features have focused on somatic mutations within the coding regions of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of 1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also uncover previously undescribed sex differences. These include sex-biases in coding and non-coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to underlying mutational processes. These results underline the pervasiveness of molecular sex differences and strengthen the call for increased consideration of sex in molecular cancer research

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Determination of 238U and 40K Radionuclide Concentrations in Some Granite Rocks by Gamma Spectroscopy and Energy Dispersive X-ray Analysis

    No full text
    Uranium-238 (238U) and potassium-40 (40K) are important naturally occurring radionuclides. Gamma spectroscopy is a direct, non-destructive method used to determine radionuclide concentrations, but it suffers from the interference of gamma lines. 40K gamma spectroscopy is affected by background interference, which leads to a reduction in the minimum detectable activity. The energy dispersive X-ray analytical technique is quick, with fewer interference problems or background effects. However, it is an indirect method for calculating and deducing the concentrations of isotopes. The aim of the present study was to compare and evaluate both techniques so that they can be utilized efficiently. The results of 238U and 40K were measured by well-calibrated gamma spectroscopy and energy dispersive X-ray techniques. the results indicated that Halayeb White granite is the most environmentally safe compared to the other two types because it contains a very low concentration of uranium 238 and potassium 40
    corecore