92 research outputs found
Postoperative Spinal Epidural Hematoma: The Danger Caused by the Misuse of Thrombin-Containing Local Hemostatics
Study DesignRetrospective case-control study.PurposeTo examine the hypothesis that the misuse of thrombin-containing local hemostatics (TCLH) increases the risk of postoperative spinal epidural hematoma (POSEH).Overview of LiteratureMany studies have focused on hypocoagulability as a risk factor for POSEH. However, there are no prior reports on the increased risk of POSEH in hypercoagulable states.MethodsPosterior instrumented lumbar spine surgery cases over 2 consecutive years were divided into two groups: a study group (98 patients in whom TCLH was used) and a control group (176 patients in whom TCLH was not used). The excess TCLH matrix that was not associated with blood clot was not removed from the patients in the study group. The senior author decided whether to use TCLH or not. Suction drains were used in all patients. The demographics, coagulation-related factors, and intraoperative factors of the patients in the two groups were analyzed. The development of POSEH was compared between the two groups.ResultsThe two groups were homogenous in demographics (age and sex), coagulation-related factors (platelet count, prothrombin time, activated partial thromboplastin time, and platelet function analysis), and surgical factors (total blood loss, operation time, blood loss/10 minutes, number of fusion segments, posterolateral fusion/posterior lumbar interbody fusion, and virgin or revision surgery). POSEH developed more frequently in the patients in the study group than in those in the control group (14/98 patients, 14.3% vs. 3/176 patients, 1.7%, respectively; p=0.001; odds ratio, 17.1).ConclusionsTCLH causes blood clot not only at the edge of damaged vessels but also at the site of extravascular blood. Excess TCLH matrix not associated with blood clot at the epidural space can enhance POSEH development because early clotted hematomas do not drain through suction drains
Recommended from our members
Case report: novel PCDH15 variant causes usher syndrome type 1F with congenital hearing loss and syndromic retinitis pigmentosa
Background
Usher syndrome (USH) is an autosomal recessive disorder primarily responsible for deaf-blindness. Patients with subtype Usher syndrome type 1 (USH1) typically experience congenital sensorineural hearing loss, abnormal vestibular function, and retinitis pigmentosa (RP). Here we present a case of Usher syndrome type 1F (USH1F) with a novel homozygous variant in the calcium-dependent cell-cell adhesion protocadherin-15 (PCDH15) gene.
Case presentation
Ophthalmic examinations were evaluated over a course of 10 years and the disease-causing variant was identified by whole exome sequencing (WES). Initial and follow-up examination of color fundus photos after 10 years revealed an increase in bone spicule pigment deposits in both eyes. A parafoveal hyper-AF ring in both eyes was shown in fundus autofluorescence (FAF) with a progressive diameter-wise constriction observed over 8 years. Outer nuclear layer (ONL) loss was observed in parafoveal and perifoveal regions of both eyes on spectral domain–optical coherence tomography (SD-OCT). Full-field electroretinography (ffERG) showed extinguished global retinal function. WES identified a novel two-base-pair deletion, c.60_61del (p.Phe21Ter), in the PCDH15 gene, confirming the diagnosis of USH1F.
Conclusions
We report a novel homozygous PCDH15 pathogenic variant expected to lead to nonsense-mediated decay (NMD) of PCDH15 mRNA. The patient exhibits a loss of function with USH1F, experiencing congenital hearing loss and syndromic RP
Wolbachia Bacteria Reside in Host Golgi-Related Vesicles Whose Position Is Regulated by Polarity Proteins
Wolbachia pipientis are intracellular symbiotic bacteria extremely common in various organisms including Drosophila melanogaster, and are known for their ability to induce changes in host reproduction. These bacteria are present in astral microtubule-associated vesicular structures in host cytoplasm, but little is known about the identity of these vesicles. We report here that Wolbachia are restricted only to a group of Golgi-related vesicles concentrated near the site of membrane biogenesis and minus-ends of microtubules. The Wolbachia vesicles were significantly mislocalized in mutant embryos defective in cell/planar polarity genes suggesting that cell/tissue polarity genes are required for apical localization of these Golgi-related vesicles. Furthermore, two of the polarity proteins, Van Gogh/Strabismus and Scribble, appeared to be present in these Golgi-related vesicles. Thus, establishment of polarity may be closely linked to the precise insertion of Golgi vesicles into the new membrane addition site
Telomerase Inhibition Targets Clonogenic Multiple Myeloma Cells through Telomere Length-Dependent and Independent Mechanisms
Plasma cells constitute the majority of tumor cells in multiple myeloma (MM) but lack the potential for sustained clonogenic growth. In contrast, clonotypic B cells can engraft and recapitulate disease in immunodeficient mice suggesting they serve as the MM cancer stem cell (CSC). These tumor initiating B cells also share functional features with normal stem cells such as drug resistance and self-renewal potential. Therefore, the cellular processes that regulate normal stem cells may serve as therapeutic targets in MM. Telomerase activity is required for the maintenance of normal adult stem cells, and we examined the activity of the telomerase inhibitor imetelstat against MM CSC. Moreover, we carried out both long and short-term inhibition studies to examine telomere length-dependent and independent activities.Human MM CSC were isolated from cell lines and primary clinical specimens and treated with imetelstat, a specific inhibitor of the reverse transcriptase activity of telomerase. Two weeks of exposure to imetelstat resulted in a significant reduction in telomere length and the inhibition of clonogenic MM growth both in vitro and in vivo. In addition to these relatively long-term effects, 72 hours of imetelstat treatment inhibited clonogenic growth that was associated with MM CSC differentiation based on expression of the plasma cell antigen CD138 and the stem cell marker aldehyde dehydrogenase. Short-term treatment of MM CSC also decreased the expression of genes typically expressed by stem cells (OCT3/4, SOX2, NANOG, and BMI1) as revealed by quantitative real-time PCR.Telomerase activity regulates the clonogenic growth of MM CSC. Moreover, reductions in MM growth following both long and short-term telomerase inhibition suggest that it impacts CSC through telomere length-dependent and independent mechanisms
Early chronic kidney disease: diagnosis, management and models of care
Chronic kidney disease (CKD) is prevalent in many countries, and the costs associated with the care of patients with end-stage renal disease (ESRD) are estimated to exceed US$1 trillion globally. The clinical and economic rationale for the design of timely and appropriate health system responses to limit the progression of CKD to ESRD is clear. Clinical care might improve if early-stage CKD with risk of progression to ESRD is differentiated from early-stage CKD that is unlikely to advance. The diagnostic tests that are currently used for CKD exhibit key limitations; therefore, additional research is required to increase awareness of the risk factors for CKD progression. Systems modelling can be used to evaluate the impact of different care models on CKD outcomes and costs. The US Indian Health Service has demonstrated that an integrated, system-wide approach can produce notable benefits on cardiovascular and renal health outcomes. Economic and clinical improvements might, therefore, be possible if CKD is reconceptualized as a part of primary care. This Review discusses which early CKD interventions are appropriate, the optimum time to provide clinical care, and the most suitable model of care to adopt
Behavioral genetics and taste
This review focuses on behavioral genetic studies of sweet, umami, bitter and salt taste responses in mammals. Studies involving mouse inbred strain comparisons and genetic analyses, and their impact on elucidation of taste receptors and transduction mechanisms are discussed. Finally, the effect of genetic variation in taste responsiveness on complex traits such as drug intake is considered. Recent advances in development of genomic resources make behavioral genetics a powerful approach for understanding mechanisms of taste
Pan-cancer analysis of whole genomes
Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
- …