10 research outputs found

    The onset of cerebral infarction may be affected by differences in atmospheric pressure distribution patterns

    Get PDF
    BackgroundSome papers have highlighted a possible causal relationship between the onset of ischemic stroke and weather conditions. This study aimed to elucidate the onset mechanism of cerebral infarction from a meteorological approach. We focused on the atmospheric pressure distribution patterns (APDPs).MethodsThe subjects are 221 cases diagnosed as cardiogenic cerebral embolism (Group A) and 612 cases diagnosed as atherosclerotic cerebral thrombosis (Group B). We investigated the APDP on the date closest to the date and time of onset of cerebral infarction in each patient on the website and chose the most similar one from the reported 11 APDPs. Groups A and B were compared for clinical characteristics and the appearance rate of each APDP in each group.ResultsThe clinical characteristics of Groups A and B were consistent with some previously reported clinical characteristics of cerebral embolism and cerebral thrombosis except for smoking. The appearance rate of the other high-pressure type, which cannot be classified as either the anticyclone belt type or the migratory anticyclone type, in Group B was statistically significantly higher than that in Group A, and the appearance rate of the anticyclone belt type in Group A was statistically significantly higher than that in Group B (p < 0.05, Fisher's exact probability method, respectively).ConclusionsCerebral embolism and cerebral thrombosis exhibited significant differences in APDPs on the day of onset. Dehydration particularly in the other high-pressure type or in the anticyclone belt type should be prevented. Further investigation should focus on the other meteorological factors

    Self-assembling A6K peptide nanotubes as a mercaptoundecahydrododecaborate (BSH) delivery system for boron neutron capture t (BNCT)

    Get PDF
    Boron neutron capture therapy (BNCT) is a tumor selective therapy, the effectiveness of which depends on sufficient 10B delivery to and accumulation in tumors. In this study, we used self-assembling A6K peptide nanotubes as boron carriers and prepared new boron agents by simple mixing of A6K and BSH. BSH has been used to treat malignant glioma patients in clinical trials and its drug safety and availability have been confirmed; however, its contribution to BNCT efficacy is low. A6K nanotube delivery improved two major limitations of BSH, including absence of intracellular transduction and non-specific drug delivery to tumor tissue. Varying the A6K peptide and BSH mixture ratio produced materials with different morphologies—determined by electron microscopy—and intracellular transduction efficiencies. We investigated the A6K/BSH 1:10 mixture ratio and found high intracellular boron uptake with no toxicity. Microscopy observation showed intracellular localization of A6K/BSH in the perinuclear region and endosome in human glioma cells. The intracellular boron concentration using A6K/BSH was almost 10 times higher than that of BSH. The systematic administration of A6K/BSH via mouse tail vein showed tumor specific accumulation in a mouse brain tumor model with immunohistochemistry and pharmacokinetic study. Neutron irradiation of glioma cells treated with A6K/BSH showed the inhibition of cell proliferation in a colony formation assay. Boron delivery using A6K peptide provides a unique and simple strategy for next generation BNCT drugs

    Naturally occurring tetramic acid products: isolation, structure elucidation and biological activity

    No full text

    The physiology of rowing with perspective on training and health

    No full text

    Energy levels of light nuclei A = 11–12

    No full text
    corecore