303 research outputs found

    CP violation in the mass matrix of heavy neutrinos

    Get PDF
    We discuss the question of CP-violation in the effective Hamiltonian approach in models of leptogenesis through heavy right handed neutrino decays. We first formulate the problem in four component notation and then point out that before the heavy neutrinos have decayed away, the universe becomes CP-asymmetric in the heavy neutrinos. However, the lepton asymmetry generated after they completely decay are independent of this asymmetry.Comment: 9 pages latex file, minor change

    Leptogenesis from Additional Higgs Doublets

    Full text link
    Leptogenesis may be induced by the mixing of extra Higgs doublets with experimentally accessible masses. This mechanism relies on diagrammatic cuts that are kinematically forbidden in the vacuum but contribute at finite temperature. A resonant enhancement of the asymmetry occurs generically provided the dimensionless Yukawa and self-interactions are suppressed compared to those of the Standard Model Higgs field. This is in contrast to typical scenarios of Resonant Leptogenesis, where the asymmetry is enhanced by imposing a degeneracy of singlet neutrino masses.Comment: 12 pages; more phenomenological details adde

    Leptogenesis with Majorana neutrinos

    Full text link
    I review the origin of the lepton asymmetry which is converted to a baryon excess at the electroweak scale. This scenario becomes more attractive if we can relate it to other physical phenomena. For this reason I elaborate on the conditions of the early universe which lead to a sizable lepton asymmetry. Then I describe methods and models which relate the low energy parameters of neutrinos to the high energy (cosmological) CP-violation and to neutrinoless double beta-decay.Comment: Contributed to 1st Workshop on Neutrino - Nucleus Interactions in the Few GeV Region (NuInt01), Tsukuba, Japan, 13-16 Dec 2001. 6 pages, 6 figure

    Korea and Vietnam--Two Constitutional Experiments

    Get PDF

    Leptogenesis with "Fuzzy Mass Shell" for Majorana Neutrinos

    Get PDF
    We study the mixing of elementary and composite particles. In quantum field theory the mixing of composite particles originates in the couplings of the constituent quarks and for neutrinos in self-energy diagrams. In the event that the incoming and outgoing neutrinos have different masses, the self-energy diagrams vanish because energy is not conserved but the finite decaying widths make the mixing possible. We can consider the neutrinos to be "fuzzy" states on their mass shell and the mixing is understood as the overlap of two wavefunctions. These considerations restrict the mass difference to be approximately equal to or smaller than the largest of the two widths: abs(M_i - M_j) lessorequal max(Gamma_i, Gamma_j).Comment: 11 pages, 1 figur

    Korea and Vietnam--Two Constitutional Experiments

    Get PDF

    Soft Leptogenesis

    Get PDF
    We study ``soft leptogenesis'', a new mechanism of leptogenesis which does not require flavour mixing among the right-handed neutrinos. Supersymmetry soft-breaking terms give a small mass splitting between the CP-even and CP-odd right-handed sneutrino states of a single generation and provide a CP-violating phase sufficient to generate a lepton asymmetry. The mechanism is successful if the lepton-violating soft bilinear coupling is unconventionally (but not unnaturally) small. The values of the right-handed neutrino masses predicted by soft leptogenesis can be low enough to evade the cosmological gravitino problem.Comment: 13 pages, 5 figures, uses axodraw.st

    Leptogenesis: The Other Cuts

    Full text link
    For standard leptogenesis from the decay of singlet right-handed neutrinos, we derive source terms for the lepton asymmetry that are present in a finite density background but absent in the vacuum. These arise from cuts through the vertex correction to the decay asymmetry, where in the loop either the Higgs boson and the right-handed neutrino or the left-handed lepton and the right-handed neutrino are simultaneously on shell. We evaluate the source terms numerically and use them to calculate the lepton asymmetry for illustrative points in parameter space, where we consider only two right-handed neutrinos for simplicity. Compared to calculations where only the standard cut through the propagators of left-handed lepton and Higgs boson is included, sizable corrections arise when the masses of the right-handed neutrinos are of the same order, but the new sources are found to be most relevant when the decaying right-handed neutrino is heavier than the one in the loop. In that situation, they can yield the dominant contribution to the lepton asymmetry.Comment: 22 pages, 4 figure

    Baryon Asymmetry, Neutrino Mixing and Supersymmetric SO(10) Unification

    Get PDF
    The baryon asymmetry of the universe can be explained by the out-of-equilibrium decays of heavy right-handed neutrinos. We analyse this mechanism in the framework of a supersymmetric extension of the Standard Model and show that lepton number violating scatterings are indispensable for baryogenesis, even though they may wash-out a generated asymmetry. By assuming a similar pattern of mixings and masses for neutrinos and up-type quarks, as suggested by SO(10) unification, we can generate the observed baryon asymmetry without any fine tuning, if (BL)(B-L) is broken at the unification scale ΛGUT1016\Lambda_{GUT}\sim 10^{16} GeV and, if m_{\n_\m} \sim 3\cdot 10^{-3} eV as preferred by the MSW solution to the solar neutrino deficit.Comment: latex2e, 39 pages, 15 figures, uses epsfig and pstricks. Additional contribution to the CP-asymmetry added, conclusions unchanged. Final version, to appear in Nucl.Phys.
    corecore