3,839 research outputs found

    Circumstellar dust

    Get PDF
    The presence of dust in the general interstellar medium is inferred from the extinction, polarization, and scattering of starlight; the presence of dark nebulae; interstellar depletions; the observed infrared emission around certain stars and various types of interstellar clouds. Interstellar grains are subject to various destruction mechanisms that reduce their size or even completely destroy them. A continuous source of newly formed dust must therefore be present for dust to exist in the various phases of the interstellar medium (ISM). The working group has the following goals: (1) review the evidences for the formation of dust in the various sources; (2) examine the clues to the nature and composition of the dust; (3) review the status of grain formation theories; (4) examine any evidence for the processing of the dust prior to its injection into the interstellar medium; and (5) estimate the relative contribution of the various sources to the interstellar dust population

    The Importance of Physical Models for Deriving Dust Masses and Grain Size Distributions in Supernova Ejecta I: Radiatively Heated Dust in the Crab Nebula

    Get PDF
    Recent far-infrared (IR) observations of supernova remnants (SNRs) have revealed significantly large amounts of newly-condensed dust in their ejecta, comparable to the total mass of available refractory elements. The dust masses derived from these observations assume that all the grains of a given species radiate at the same temperature, regardless of the dust heating mechanism or grain radius. In this paper, we derive the dust mass in the ejecta of the Crab Nebula, using a physical model for the heating and radiation from the dust. We adopt a power-law distribution of grain sizes and two different dust compositions (silicates and amorphous carbon), and calculate the heating rate of each dust grain by the radiation from the pulsar wind nebula (PWN). We find that the grains attain a continuous range of temperatures, depending on their size and composition. The total mass derived from the best-fit models to the observed IR spectrum is 0.019-0.13 solar masses, depending on the assumed grain composition. We find that the power-law size distribution of dust grains is characterized by a power-law index of 3.5-4.0 and a maximum grain size larger than 0.1 microns. The grain sizes and composition are consistent with what is expected for dust grains formed in a Type IIP SN. Our derived dust mass is at least a factor of two less than the mass reported in previous studies of the Crab Nebula that assumed more simplified two-temperature models. The results of this study show that a physical model resulting in a realistic distribution of dust temperatures can constrain the dust properties and affect the derived dust masses. Our study may also have important implications for deriving grain properties and mass estimates in other SNRs and for the ultimate question of whether SNe are major sources of dust in the Galactic interstellar medium (ISM) and in external galaxies.Comment: 9 pages, 2 tables, 8 figures, Accepted to The Astrophysical Journa

    Constraints to Energy Spectra of Blazars based on Recent EBL Limits from Galaxy Counts

    Full text link
    We combine the recent estimate of the contribution of galaxies to the 3.6 micron intensity of the extragalactic background light (EBL) with optical and near-infrared (IR) galaxy counts to set new limits on intrinsic spectra of some of the most distant TeV blazars 1ES 0229+200, 1ES 1218+30.4, and 1ES 1101-232, located at redshifts 0.1396, 0.182, and 0.186, respectively. The new lower limit on the 3.6 micron EBL intensity is significantly higher than the previous one set by the cumulative emission from resolved Spitzer galaxies. Correcting for attenuation by the revised EBL, we show that the differential spectral index of the intrinsic spectrum of the three blazars is 1.28 +- 0.20 or harder. These results present blazar emission models with the challenge of producing extremely hard intrinsic spectra in the sub-TeV to multi-TeV regime. These results also question the reliability of recently derived upper limits on the near-IR EBL intensity that are solely based on the assumption that intrinsic blazar spectra should not be harder than 1.5.Comment: 13 pages, 2 figures, submitted to the Astrophysical Journa
    corecore