7,347 research outputs found

    The existence of Burnett coefficients in the periodic Lorentz gas

    Full text link
    The linear super-Burnett coefficient gives corrections to the diffusion equation in the form of higher derivatives of the density. Like the diffusion coefficient, it can be expressed in terms of integrals of correlation functions, but involving four different times. The power law decay of correlations in real gases (with many moving particles) and the random Lorentz gas (with one moving particle and fixed scatterers) are expected to cause the super-Burnett coefficient to diverge in most cases. Here we show that the expression for the super-Burnett coefficient of the periodic Lorentz gas converges as a result of exponential decay of correlations and a nontrivial cancellation of divergent contributions.Comment: 8 pages, no figure

    Spectral and spatial observations of microwave spikes and zebra structure in the short radio burst of May 29, 2003

    Full text link
    The unusual radio burst of May 29, 2003 connected with the M1.5 flare in AR 10368 has been analyzed. It was observed by the Solar Broadband Radio Spectrometer (SBRS/Huairou station, Beijing) in the 5.2-7.6 GHz range. It proved to be only the third case of a neat zebra structure appearing among all observations at such high frequencies. Despite the short duration of the burst (25 s), it provided a wealth of data for studying the superfine structure with millisecond resolution (5 ms). We localize the site of emission sources in the flare region, estimate plasma parameters in the generation sites, and suggest applicable mechanisms for interpretating spikes and zebra-structure generation. Positions of radio bursts were obtained by the Siberian Solar Radio Telescope (SSRT) (5.7 GHz) and Nobeyama radioheliograph (NoRH) (17 GHz). The sources in intensity gravitated to tops of short loops at 17 GHz, and to long loops at 5.7 GHz. Short pulses at 17 GHz (with a temporal resolution of 100 ms) are registered in the R-polarized source over the N-magnetic polarity (extraordinary mode). Dynamic spectra show that all the emission comprised millisecond pulses (spikes) of 5-10 ms duration in the instantaneous band of 70 to 100 MHz, forming the superfine structure of different bursts, essentially in the form of fast or slow-drift fibers and various zebra-structure stripes. Five scales of zebra structures have been singled out. As the main mechanism for generating spikes (as the initial emission) we suggest the coalescence of plasma waves with whistlers in the pulse regime of interaction between whistlers and ion-sound waves. In this case one can explain the appearance of fibers and sporadic zebra-structure stripes exhibiting the frequency splitting.Comment: 11 pages, 5 figures, in press; A&A 201

    Virtual Legendrian Isotopy

    Full text link
    An elementary stabilization of a Legendrian link LL in the spherical cotangent bundle ST∗MST^*M of a surface MM is a surgery that results in attaching a handle to MM along two discs away from the image in MM of the projection of the link LL. A virtual Legendrian isotopy is a composition of stabilizations, destabilizations and Legendrian isotopies. In contrast to Legendrian knots, virtual Legendrian knots enjoy the property that there is a bijective correspondence between the virtual Legendrian knots and the equivalence classes of Gauss diagrams. We study virtual Legendrian isotopy classes of Legendrian links and show that every such class contains a unique irreducible representative. In particular we get a solution to the following conjecture of Cahn, Levi and the first author: two Legendrian knots in ST∗S2ST^*S^2 that are isotopic as virtual Legendrian knots must be Legendrian isotopic in ST∗S2.ST^*S^2.Comment: 10 pages, 4 figur
    • …
    corecore