884 research outputs found

    Dark matter search by exclusive studies of X-rays following WIMPs nuclear interactions

    Get PDF
    It is shown that weakly interacting massive particles (WIMPs), which are possible cold dark matter candidates, can be studied by exclusive measurements of X-rays following WIMPs nuclear interactions. Inner-shell atomic electrons are ionized through WIMP-nuclear interaction, and then mono-energetic X-rays are emitted when they are filled by outer-shell electrons. The number of inner-shell holes amounts to as large as one per five nuclear recoils for K-shell and several per recoil for L-shell in the case of medium heavy target nuclei interacting with 100-300 GeV WIMPs. Then the K and L X-ray peaks show up in the 5-50 keV region. Consequently exclusive studies of the X-rays in coincidence with the nuclear recoils and the ionization electrons are found to provide excellent opportunities to detect WIMPs such as the Lightest Super Symmetric Particles (LSP)Comment: 13 pages, 2 table

    Can Solar Neutrinos be a Serious Background in Direct Dark Matter Searches?

    Get PDF
    The coherent contribution of all neutrons in neutrino nucleus scattering due to the neutral current is examined considering the boron solar neutrinos. These neutrinos could potentially become a source of background in the future dark matter searches aiming at nucleon cross sections in the region well below the few events per ton per year.Comment: 15 pages, 17 eps figure

    Direct Wimp Detection in Directional Experiments

    Get PDF
    The recent WMAP data have confirmed that exotic dark matter together with the vacuum energy (cosmological constant) dominate in the flat Universe. Thus the direct dark matter search, consisting of detecting the recoiling nucleus, is central to particle physics and cosmology. Modern particle theories naturally provide viable cold dark matter candidates with masses in the GeV-TeV region. Supersymmetry provides the lightest supersymmetric particle (LSP), theories in extra dimensions the lightest Kaluza-Klein particle (LKP) etc. In such theories the expected rates are much lower than the present experimental goals. So one should exploit characteristic signatures of the reaction, such as the modulation effect and, in directional experiments, the correlation of the event rates with the sun's motion. In standard non directional experiments the modulation is small, less than two per cent and the location of the maximum depends on the unknown particle's mass. In directional experiments, in addition to the forward-backward asymmetry due to the sun's motion, one expects a larger modulation, which depends on the direction of observation. We study such effects both in the case of a light and a heavy target. Furthermore, since it now appears that the planned experiments will be partly directional, in the sense that they can only detect the line of the recoiling nucleus, but not the sense of direction on it, we study which of the above mentioned interesting features, if any, will persist in these less ambitious experiments.Comment: 22 LaTex pages, 28 figure

    Evaluation of HTTP/DASH Adaptation Algorithms on Vehicular Networks

    Full text link
    Video streaming currently accounts for the majority of Internet traffic. One factor that enables video streaming is HTTP Adaptive Streaming (HAS), that allows the users to stream video using a bit rate that closely matches the available bandwidth from the server to the client. MPEG Dynamic Adaptive Streaming over HTTP (DASH) is a widely used standard, that allows the clients to select the resolution to download based on their own estimations. The algorithm for determining the next segment in a DASH stream is not partof the standard, but it is an important factor in the resulting playback quality. Nowadays vehicles are increasingly equipped with mobile communication devices, and in-vehicle multimedia entertainment systems. In this paper, we evaluate the performance of various DASH adaptation algorithms over a vehicular network. We present detailed simulation results highlighting the advantages and disadvantages of various adaptation algorithms in delivering video content to vehicular users, and we show how the different adaptation algorithms perform in terms of throughput, playback interruption time, and number of interruptions

    Some issues related to the direct detection of dark matter

    Full text link
    We briefly review some theoretical issues involved in the direct detection of supersymmetric (SUSY) dark matter. After a brief discussion of the allowed SYSY parameter space we focus on the determination of the traditional neutralino detection rates, in experiments which measure the energy of the recoiling nucleus, such as the coherent and spin induced rates and the dependence of the rate on the motion of the Earth (modulation effect). Then we examine the novel features appearing in directional experiments, which detect the recoiling nucleus in a given direction. Next we estimate the branching ratios for transitions to accessible excited nuclear levels. Finally we estimate the event rates leading to the atom ionization and subsequent detection of the outgoing electrons.Comment: LaTex, 15 pages, 3 PostScript figure
    corecore