751 research outputs found

    The Ionizing Efficiency of the First Stars

    Get PDF
    We investigate whether a single population of first stars could have influenced both the metal enrichment and reionization of the high-redshift intergalactic medium (IGM), by calculating the generated ionizing radiation per unit metal yield as a function of the metallicity of stellar populations. We examine the relation between the ionizing radiation and carbon created by the first stars, since the evidence for the widespread enrichment of the IGM at redshifts zz about 3-4 comes from the detection of C IV absorption. We find that the number of ionizing photons per baryon generated in association with the detected IGM metallicity may well exceed that required for a late hydrogen reionization at zz of about 6, by up to a factor of 10-20 for metal-free stars in a present-day initial mass function (IMF). This would be in agreement with similar indications from recent observations of the microwave background and the high-zz IGM. In addition, the contribution from intermediate-mass stars to the total metal yield, neglected in past works, substantially impacts such calculations. Lastly, a top-heavy IMF is not necessarily preferred as a more efficient high-zz source of ionizing radiation, based on nucleosynthetic arguments in association with a given level of IGM enrichment.Comment: 5 pages, 1 figure. Accepted for publication in ApJLetters, v. 594 (Sept. 1, 2003); minor revisions, results unchange

    Observational Signatures of the First Stars

    Full text link
    At present, there are several feasible observational probes of the first stars in the universe. Here, we examine the constraints on early stellar activity from the metallicity of the high-redshift Ly-α\alpha clouds, from the effects of stellar ionizing photons on reionization and the cosmic microwave background (CMB), and from the implications of gravitational microlensing results for the presence of stellar remnants in galactic halos. We also discuss whether the above signatures are consistent with each other, i.e., if they reflect the same population of stars.Comment: 3 pages, to appear in the conference proceedings of "Cosmic Evolution", Institut d'Astrophysique de Paris, November, 200

    The Early Formation, Evolution and Age of the Neutron-Capture Elements in the Early Galaxy

    Get PDF
    Abundance observations indicate the presence of rapid-neutron capture (i.e., r-process) elements in old Galactic halo and globular cluster stars. These observations demonstrate that the earliest generations of stars in the Galaxy, responsible for neutron-capture synthesis and the progenitors of the halo stars, were rapidly evolving. Abundance comparisons among several halo stars show that the heaviest neutron-capture elements (including Ba and heavier) are consistent with a scaled solar system r-process abundance distribution, while the lighter such elements do not conform to the solar pattern. These comparisons suggest two r-process sites or at least two different sets of astrophysical conditions. The large star-to-star scatter observed in the neutron-capture/iron ratios at low metallicities -- which disappears with increasing [Fe/H] -- suggests an early, chemically unmixed and inhomogeneous Galaxy. The stellar abundances indicate a change from the r-process to the slow neutron capture (i.e., s-) process at higher metallicities in the Galaxy. The detection of thorium in halo and globular cluster stars offers a promising, independent age-dating technique that can put lower limits on the age of the Galaxy.Comment: 6 pages, 3 figures; To appear in the proceedings of the 20th Texas Symposium on Relativistic Astrophysics, J. C. Wheeler & H. Martel (eds.

    MESA and NuGrid Simulations of Classical Nova Outbursts and Nucleosynthesis

    Get PDF
    Classical novae are the results of surface thermonuclear explosions of hydrogen accreted by white dwarfs (WDs) from their low-mass main-sequence or red-giant binary companions. Chemical composition analysis of their ejecta shows that nova outbursts occur on both carbon-oxygen (CO) and more massive oxygen-neon (ONe) WDs, and that there is cross-boundary mixing between the accreted envelope and underlying WD. We demonstrate that the state-of-the-art stellar evolution code MESA and post-processing nucleosynthesis tools of NuGrid can successfully be used for modeling of CO and ONe nova outbursts and nucleosynthesis. The convective boundary mixing (CBM) in our 1D numerical simulations is implemented using a diffusion coefficient that is exponentially decreasing with a distance below the bottom of the convective envelope. We show that this prescription produces maximum temperature evolution profiles and nucleosynthesis yields in good agreement with those obtained using the commonly adopted 1D nova model in which the CBM is mimicked by assuming that the accreted envelope has been pre-mixed with WD's material. In a previous paper, we have found that 3He can be produced in situ in solar-composition envelopes accreted with slow rates (dM/dt < 1e-10 M_sun/yr) by cold (T_WD < 1d7 K) CO WDs, and that convection is triggered by 3He burning before the nova outburst in this case. Here, we confirm this result for ONe novae. Additionally, we find that the interplay between the 3He production and destruction in the solar-composition envelope accreted with an intermediate rate, e.g. dM/dt = 1e-10 M_sun/yr, by the 1.15 M_sun ONe WD with a relatively high initial central temperature, e.g. T_WD = 15e6 K, leads to the formation of a thick radiative buffer zone that separates the bottom of the convective envelope from the WD surface.Comment: 6 pages, 4 figures, STELLA NOVAE: FUTURE AND PAST DECADES Conference Proceedings, Submitted to ASP Conference Serie

    Type I X-ray Bursts at Low Accretion Rates

    Get PDF
    Neutron stars, with their strong surface gravity, have interestingly short timescales for the sedimentation of heavy elements. Recent observations of unstable thermonuclear burning (observed as X-ray bursts) on the surfaces of slowly accreting neutron stars (<0.01< 0.01 of the Eddington rate) motivate us to examine how sedimentation of CNO isotopes affects the ignition of these bursts. We further estimate the burst development using a simple one-zone model with a full reaction network. We report a region of mass accretion rates for weak H flashes. Such flashes can lead to a large reservoir of He, the unstable burning of which may explain some observed long bursts (duration 1000\sim 1000 s).Comment: 6 pages, 2 figures, submitted to the proceedings of the conference "The Multicoloured Landscape of Compact Objects and Their Explosive Origins'', 2006 June 11--24, Cefalu, Sicily (Italy), to be published by AI

    Nuclear Chronometers

    Get PDF
    Observations of metal-poor Galactic halo stars indicate that the abundance pattern of the (heaviest) neutron-capture elements is consistent with the scaled solar system r-process abundances. Utilizing the radioactive (r-process) element thorium, age determinations have been made for several of these same stars, placing constraints on both Galactic and cosmological age estimates.Comment: 6 pages, 2 figures. To appear in the Proceedings of ``Cosmic Evolution'

    Neutron-Capture Element Trends in the Halo

    Full text link
    In a brief review of abundances neutron-capture elements (Z > ~30) in metal-poor halo stars, attention is called to their star-to-star scatter, the dominance of r-process synthesis at lowest metallicities, the puzzle of the lighter members of this element group, and the possibility of a better r-/s-process discriminant.Comment: 6 pages, 2 figures. To appear in the Proceedings of ``Cosmic Evolution'

    CNO abundances and hydrodynamic models of the Nova outbursts. 4: Comparison with observations

    Get PDF
    A variety of observations of novae are discussed in light of theoretical models. It is proposed that the nearly constant bolometric luminosity of FH Ser originates in the non-degenerate hydrogen-burning region at the bottom of the hydrogen-rich envelope which remains after the primary ejection. The shift of the wavelength of peak emission from the visual to shortward of the ultraviolet is caused by the decrease of the photospheric radius of the remnant envelope as the bolometric luminosity stays nearly constant. The oscillations in the light curve of GK Per during the transition stage can be explained by a pulsation of the remnant envelope when it is the size of the Roche lobe. The CNO over-abundances in novae reported by various observers are strongly suggestive of this nova mechanism. Finally, the implications of the upper limits of C-13 and N-15 in DQ Her are discussed
    corecore