1,225 research outputs found

    Occlusion Effects and the Distribution of Interstellar Cloud Sizes and Masses

    Full text link
    The frequency distributions of sizes of ``clouds" and ``clumps" within clouds are significantly flatter for extinction surveys than for CO spectral line surveys, even for comparable size ranges. A possible explanation is the blocking of extinction clouds by larger foreground clouds (occlusion), which should not affect spectral line surveys much because clouds are resolved in velocity space along a given line of sight. We present a simple derivation of the relation between the true and occluded size distributions, assuming clouds are uniformly distributed in space or the distance to a cloud comples is much greater than the size of the complex. Because the occlusion is dominated by the largest clouds, we find that occlusion does not affect the measured size distribution except for sizes comparable to the largest size, implying that occlusion is not responsible for the discrepancy if the range in sizes of the samples is large. However, we find that the range in sizes for many of the published observed samples is actually quite small, which suggests that occlusion does affect the extinction sample and/or that the discrepancy could arise from the different operational definitions and selection effects involved in the two samples. Size and mass spectra from an IRAS survey (Wood \etal\ 1994) suggest that selection effects play a major role in all the surveys. We conclude that a reliable determination of the ``true" size and mass spectra of clouds will require spectral line surveys with very high signal-to-noise and sufficient resolution and sampling to cover a larger range of linear sizes, as well as careful attention to selection effects.Comment: 13 pages, LATEX, aas style, Submitted to Ap

    Turbulence-Induced Relative Velocity of Dust Particles II: The Bidisperse Case

    Full text link
    We extend our earlier work on turbulence-induced relative velocity between equal-size particles (Pan and Padoan, Paper I) to particles of arbitrarily different sizes. The Pan and Padoan (PP10) model shows that the relative velocity between different particles has two contributions, named the generalized shear and acceleration terms, respectively. The generalized shear term represents the particles' memory of the spatial flow velocity difference across the particle distance in the past, while the acceleration term is associated with the temporal flow velocity difference on individual particle trajectories. Using the simulation of Paper I, we compute the root-mean-square relative velocity, ^1/2, as a function of the friction times, tau_p1 and tau_p2, of the two particles, and show that the PP10 prediction is in satisfactory agreement with the data, confirming its physical picture. For a given tau_p1 below the Lagrangian correlation time of the flow, T_L, ^1/2 as a function of tau_p2 shows a dip at tau_p2~tau_p1, indicating tighter velocity correlation between similar particles. Defining a ratio f=tau_pl/tau_ph, with tau_pl and tau_ph the friction times of the smaller and larger particles, we find that ^1/2 increases with decreasing f due to the generalized acceleration contribution, which dominates at f<1/4. At a fixed f, our model predicts that ^1/2 scales as tau_ph^1/2 for tau_p,h in the inertial range of the flow, stays roughly constant for T_L <tau_ph < T_L/f, and finally decreases as tau_ph^-1/2 for tau_ph>>T_L/f. The acceleration term is independent of the particle distance, r, and thus reduces the r-dependence of ^1/2 in the bidisperse case.Comment: 23 pages, 12 figures, Accepted to Ap

    Wind-Driven Gas Networks and Star Formation in Galaxies: Reaction-Advection Hydrodynamic Simulations

    Full text link
    The effects of wind-driven star formation feedback on the spatio-temporal organization of stars and gas in galaxies is studied using two-dimensional intermediate-representational quasi-hydrodynamical simulations. The model retains only a reduced subset of the physics, including mass and momentum conservation, fully nonlinear fluid advection, inelastic macroscopic interactions, threshold star formation, and momentum forcing by winds from young star clusters on the surrounding gas. Expanding shells of swept-up gas evolve through the action of fluid advection to form a ``turbulent'' network of interacting shell fragments whose overall appearance is a web of filaments (in two dimensions). A new star cluster is formed whenever the column density through a filament exceeds a critical threshold based on the gravitational instability criterion for an expanding shell, which then generates a new expanding shell after some time delay. A filament- finding algorithm is developed to locate the potential sites of new star formation. The major result is the dominance of multiple interactions between advectively-distorted shells in controlling the gas and star morphology, gas velocity distribution and mass spectrum of high mass density peaks, and the global star formation history. The gas morphology observations of gas in the LMC and in local molecular clouds. The frequency distribution of present-to-past average global star formation rate, the distribution of gas velocities in filaments (found to be exponential), and the cloud mass spectra (estimated using a structure tree method), are discussed in detail.Comment: 40 pp, 15 eps figs, mnras style, accepted for publication in MNRAS, abstract abridged, revisions in response to referee's comment
    • …
    corecore