54 research outputs found

    Vibrio cholerae vexH Encodes a Multiple Drug Efflux Pump That Contributes to the Production of Cholera Toxin and the Toxin Co-Regulated Pilus

    Get PDF
    The resistance-nodulation-division (RND) efflux systems are ubiquitous transporters that function in antimicrobial resistance. Recent studies showed that RND systems were required for virulence factor production in Vibrio cholerae. The V. cholerae genome encodes six RND efflux systems. Three of the RND systems (VexB, VexD, and VexK) were previously shown to be redundant for in vitro resistance to bile acids and detergents. A mutant lacking the VexB, VexD, and VexK RND pumps produced wild-type levels of cholera toxin (CT) and the toxin co-regulated pilus (TCP) and was moderately attenuated for intestinal colonization. In contrast, a RND negative mutant produced significantly reduced amounts of CT and TCP and displayed a severe colonization defect. This suggested that one or more of the three uncharacterized RND efflux systems (i.e. VexF, VexH, and VexM) were required for pathogenesis. In this study, a genetic approach was used to generate a panel of V. cholerae RND efflux pump mutants in order to determine the function of VexH in antimicrobial resistance, virulence factor production, and intestinal colonization. VexH contributed to in vitro antimicrobial resistance and exhibited a broad substrate specificity that was redundant with the VexB, VexD, and VexK RND efflux pumps. These four efflux pumps were responsible for in vitro antimicrobial resistance and were required for virulence factor production and intestinal colonization. Mutation of the VexF and/or VexM efflux pumps did not affect in vitro antimicrobial resistance, but did negatively affect CT and TCP production. Collectively, our results demonstrate that the V. cholerae RND efflux pumps have redundant functions in antimicrobial resistance and virulence factor production. This suggests that the RND efflux systems contribute to V. cholerae pathogenesis by providing the bacterium with protection against antimicrobial compounds that are present in the host and by contributing to the regulated expression of virulence factors

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    In vitro models of cancer stem cells and clinical applications

    Full text link

    Nanocomposites: synthesis, structure, properties and new application opportunities

    Full text link

    White matter hyperintensities and cerebral amyloidosis: necessary and sufficient for clinical expression of Alzheimer disease?

    No full text
    White matter hyperintensities contribute to the presentation of AD and, in the context of significant amyloid deposition, may provide a second hit necessary for the clinical manifestation of the disease. As risk factors for the development of WMHs are modifiable, these findings suggest intervention and prevention strategies for the clinical syndrome of AD

    Tumour morphology predicts PALB2 germline mutation status

    Get PDF
    Fulltext embargoed for: 12 months post date of publicationBACKGROUND: Population-based studies of breast cancer have estimated that at least some PALB2 mutations are associated with high breast cancer risk. For women carrying PALB2 mutations, knowing their carrier status could be useful in directing them towards effective cancer risk management and therapeutic strategies. We sought to determine whether morphological features of breast tumours can predict PALB2 germline mutation status. METHODS: Systematic pathology review was conducted on breast tumours from 28 female carriers of PALB2 mutations (non-carriers of other known high-risk mutations, recruited through various resources with varying ascertainment) and on breast tumours from a population-based sample of 828 Australian women diagnosed before the age of 60 years (which included 40 BRCA1 and 18 BRCA2 mutation carriers). Tumour morphological features of the 28 PALB2 mutation carriers were compared with those of 770 women without high-risk mutations. RESULTS: Tumours arising in PALB2 mutation carriers were associated with minimal sclerosis (odds ratio (OR)=19.7; 95% confidence interval (CI)=6.0-64.6; P=5 × 10(-7)). Minimal sclerosis was also a feature that distinguished PALB2 mutation carriers from BRCA1 (P=0.05) and BRCA2 (P=0.04) mutation carriers. CONCLUSION: This study identified minimal sclerosis to be a predictor of germline PALB2 mutation status. Morphological review can therefore facilitate the identification of women most likely to carry mutations in PALB2
    corecore