4 research outputs found

    Methylation profiling of twenty promoter-CpG islands of genes which may contribute to hepatocellular carcinogenesis

    Get PDF
    BACKGROUND: Hepatocellular carcinoma (HCC) presents one of the major health threats in China today. A better understanding of the molecular genetics underlying malignant transformation of hepatocytes is critical to success in the battle against this disease. The methylation state of C5 of the cytosine in the CpG di-nucleotide that is enriched within or near the promoter region of over 50 % of the polymerase II genes has a drastic effect on transcription of these genes. Changes in the methylation profile of the promoters represent an alternative to genetic lesions as causative factors for the tumor-specific aberrant expression of the genes. METHODS: We have used the methylation specific PCR method in conjunction with DNA sequencing to assess the methylation state of the promoter CpG islands of twenty genes. Aberrant expression of these genes have been attributed to the abnormal methylation profile of the corresponding promoter CpG islands in human tumors. RESULTS: While the following sixteen genes remained the unmethylated in all tumor and normal tissues: CDH1, APAF1, hMLH1, BRCA1, hTERC, VHL, RARβ, TIMP3, DAPK1, SURVIVIN, p14(ARF), RB1, p15(INK4b), APC, RASSF1c and PTEN, varying degrees of tumor specific hypermethylation were associated with the p16(INK4a ), RASSF1a, CASP8 and CDH13 genes. For instance, the p16(INK4a )was highly methylated in HCC (17/29, 58.6%) and less significantly methylated in non-cancerous tissue (4/29. 13.79%). The RASSF1a was fully methylated in all tumor tissues (29/29, 100%), and less frequently methylated in corresponding non-cancerous tissue (24/29, 82.75%). CONCLUSIONS: Furthermore, co-existence of methylated with unmethylated DNA in some cases suggested that both genetic and epigenetic (CpG methylation) mechanisms may act in concert to inactivate the p16(INK4a )and RASSF1a in HCC. Finally, we found a significant association of cirrhosis with hypermethylation of the p16(INK4a )and hypomethylation of the CDH13 genes. For the first time, the survey was carried out on such an extent that it would not only provide new insights into the molecular mechanisms underscoring the aberrant expression of the genes in this study in HCC, but also offer essential information required for a good methylation-based diagnosis of HCC

    The muon system of the Daya Bay Reactor antineutrino experiment

    Get PDF
    postprin

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Miscible Polymer Blends

    No full text
    corecore