145 research outputs found

    Point process time–frequency analysis of dynamic respiratory patterns during meditation practice

    Get PDF
    Respiratory sinus arrhythmia (RSA) is largely mediated by the autonomic nervous system through its modulating influence on the heart beats. We propose a robust algorithm for quantifying instantaneous RSA as applied to heart beat intervals and respiratory recordings under dynamic breathing patterns. The blood volume pressure-derived heart beat series (pulse intervals, PIs) are modeled as an inverse Gaussian point process, with the instantaneous mean PI modeled as a bivariate regression incorporating both past PIs and respiration values observed at the beats. A point process maximum likelihood algorithm is used to estimate the model parameters, and instantaneous RSA is estimated via a frequency domain transfer function evaluated at instantaneous respiratory frequency where high coherence between respiration and PIs is observed. The model is statistically validated using Kolmogorov–Smirnov goodness-of-fit analysis, as well as independence tests. The algorithm is applied to subjects engaged in meditative practice, with distinctive dynamics in the respiration patterns elicited as a result. The presented analysis confirms the ability of the algorithm to track important changes in cardiorespiratory interactions elicited during meditation, otherwise not evidenced in control resting states, reporting statistically significant increase in RSA gain as measured by our paradigm.National Institutes of Health (U.S.) (Grant R01-HL084502)National Institutes of Health (U.S.) (Grant R01-DA015644)National Institutes of Health (U.S.) (Grant DP1-OD003646)National Institutes of Health (U.S.) (Grant K01-AT00694-01

    “Mind the Trap”: Mindfulness Practice Reduces Cognitive Rigidity

    Get PDF
    Two experiments examined the relation between mindfulness practice and cognitive rigidity by using a variation of the Einstellung water jar task. Participants were required to use three hypothetical jars to obtain a specific amount of water. Initial problems were solvable by the same complex formula, but in later problems (“critical” or “trap” problems) solving was possible by an additional much simpler formula. A rigidity score was compiled through perseverance of the complex formula. In Experiment 1, experienced mindfulness meditators received significantly lower rigidity scores than non-meditators who had registered for their first meditation retreat. Similar results were obtained in randomized controlled Experiment 2 comparing non-meditators who underwent an eight meeting mindfulness program with a waiting list group. The authors conclude that mindfulness meditation reduces cognitive rigidity via the tendency to be “blinded” by experience. Results are discussed in light of the benefits of mindfulness practice regarding a reduced tendency to overlook novel and adaptive ways of responding due to past experience, both in and out of the clinical setting

    Syndromics: A Bioinformatics Approach for Neurotrauma Research

    Get PDF
    Substantial scientific progress has been made in the past 50 years in delineating many of the biological mechanisms involved in the primary and secondary injuries following trauma to the spinal cord and brain. These advances have highlighted numerous potential therapeutic approaches that may help restore function after injury. Despite these advances, bench-to-bedside translation has remained elusive. Translational testing of novel therapies requires standardized measures of function for comparison across different laboratories, paradigms, and species. Although numerous functional assessments have been developed in animal models, it remains unclear how to best integrate this information to describe the complete translational “syndrome” produced by neurotrauma. The present paper describes a multivariate statistical framework for integrating diverse neurotrauma data and reviews the few papers to date that have taken an information-intensive approach for basic neurotrauma research. We argue that these papers can be described as the seminal works of a new field that we call “syndromics”, which aim to apply informatics tools to disease models to characterize the full set of mechanistic inter-relationships from multi-scale data. In the future, centralized databases of raw neurotrauma data will enable better syndromic approaches and aid future translational research, leading to more efficient testing regimens and more clinically relevant findings

    Economic Analysis of Knowledge: The History of Thought and the Central Themes

    Full text link
    Following the development of knowledge economies, there has been a rapid expansion of economic analysis of knowledge, both in the context of technological knowledge in particular and the decision theory in general. This paper surveys this literature by identifying the main themes and contributions and outlines the future prospects of the discipline. The wide scope of knowledge related questions in terms of applicability and alternative approaches has led to the fragmentation of research. Nevertheless, one can identify a continuing tradition which analyses various aspects of the generation, dissemination and use of knowledge in the economy

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore