135 research outputs found
Trends in breast cancer incidence in Ho Chi Minh City 1996-2015: A registry-based study.
The burden of breast cancer in Vietnam has not been documented. This study sought to estimate the incidence of breast cancer in Ho Chi Minh City, the largest economic center of Vietnam, from 1996 to 2015. This was a population-based study using the Ho Chi Minh City Cancer Registry as a source of data (coverage period: 1996-2015). The Registry adopted the International Classification of Diseases for Oncology, 3rd Edition for the classification of primary sites and morphology, and guidelines from the International Agency for Research on Cancer and the International Association of Cancer Registries. Using the population statistics from census data of Ho Chi Minh City, the point incidence of breast cancer for 5-year period was estimated. Based on the national population, we calculated the age-standardized rate (ASR) of breast cancer between 1996 and 2015. Overall 14,222 new cases of breast cancer (13,948 women, or 98%) had been registered during the 1996-2015 period; among whom, just over half (52%) were in the 2nd stage and 26% in the 3rd and 4th stages. In women, the median age at diagnosis was 50 years and there was a slight increase over time. The ASR of breast cancer during the 2011-2015 period was 107.4 cases per 100,000 women, representing an increase of 70% compared to the rate during the 1996-2000 period. In men, there was also a significant increase in the ASR: from 1.13 during the 1996-2001 period to 2.32 per 100,000 men during the 2011-2015 period. These very first data from Vietnam suggest that although the incidence of breast cancer in Vietnam remains relatively low, it has increased over time
Three-dimensional strain state and spacer thickness-dependent properties of epitaxial Pr0.7Sr0.3MnO3/La0.5Ca0.5MnO3/Pr0.7Sr0.3MnO3 trilayer structure
published_or_final_versio
Trends in incidence and histological pattern of thyroid cancer in Ho Chi Minh City, Vietnam (1996–2015): a population-based study
Background
The burden and trend of thyroid cancer in Vietnam have not been well documented. This study aimed to investigate the trends in incidence and histological pattern of thyroid cancer in Ho Chi Minh City from 1996 to 2015.
Methods
A population-based study retrieved data from the Ho Chi Minh City Cancer Registry during 1996–2015. Trends in the incidence of thyroid cancer were investigated based on age, gender, and histology for each 5-year period. Annual percentage change (APC) in incidence rates was estimated using Joinpoint regression analysis.
Results
In the study period, there were 5953 thyroid cancer cases (men-to-women ratio 1:4.5) newly diagnosed in Ho Chi Minh City with the mean age of 42.9 years (±14.9 years). The age-standardized incidence rate of thyroid cancer increased from 2.4 per 100,000 during 1996–2000 (95% confidence interval [95% CI]: 2.2–2.6) to 7.5 per 100,000 during 2011–2015 (95% CI: 7.3–7.9), corresponded to an overall APC of 8.7 (95% CI 7.6–9.9). The APC in men and women was 6.2 (95% CI: 4.2–8.2) and 9.2 (95% CI: 8.0–10.4), respectively. The incidence rate in the < 45 years age group was the highest diagnosed overall and increased significantly in both men (APC 11.0) and women (APC 10.1). Both genders shared similar distribution of subtype incidences, with papillary thyroid cancer constituted the most diagnosed (73.3% in men and 85.2% in women). The papillary thyroid cancer observed a markedly increase overall (APC of 10.7 (95% CI 9.3–12.0)).
Conclusions
There were appreciable increases in the age-standardized incidence rate of thyroid cancer in both genders, mainly contributed by the papillary subtype. The age of patients at diagnosis decreased gradually. The widespread utilization of advanced diagnostic techniques and healthcare accessibility improvement might play a potential role in these trends. Further investigations are needed to comprehend the risk factors and trends fully
A Distinct Macrophage Population Mediates Metastatic Breast Cancer Cell Extravasation, Establishment and Growth
Background: The stromal microenvironment and particularly the macrophage component of primary tumors influence their malignant potential. However, at the metastatic site the role of these cells and their mechanism of actions for establishment and growth of metastases remain largely unknown. Methodology/Principal Findings: Using animal models of breast cancer metastasis, we show that a population of host macrophages displaying a distinct phenotype is recruited to extravasating pulmonary metastatic cells regardless of species of origin. Ablation of this macrophage population through three independent means (genetic and chemical) showed that these macrophages are required for efficient metastatic seeding and growth. Importantly, even after metastatic growth is established, ablation of this macrophage population inhibited subsequent growth. Furthermore, imaging of intact lungs revealed that macrophages are required for efficient tumor cell extravasation. Conclusion/Significance: These data indicate a direct enhancement of metastatic growth by macrophages through their effects on tumor cell extravasation, survival and subsequent growth and identifies these cells as a new therapeutic target fo
Distinctive mitochondrial genome of Calanoid copepod Calanus sinicus with multiple large non-coding regions and reshuffled gene order: Useful molecular markers for phylogenetic and population studies
<p>Abstract</p> <p>Background</p> <p>Copepods are highly diverse and abundant, resulting in extensive ecological radiation in marine ecosystems. <it>Calanus sinicus </it>dominates continental shelf waters in the northwest Pacific Ocean and plays an important role in the local ecosystem by linking primary production to higher trophic levels. A lack of effective molecular markers has hindered phylogenetic and population genetic studies concerning copepods. As they are genome-level informative, mitochondrial DNA sequences can be used as markers for population genetic studies and phylogenetic studies.</p> <p>Results</p> <p>The mitochondrial genome of <it>C. sinicus </it>is distinct from other arthropods owing to the concurrence of multiple non-coding regions and a reshuffled gene arrangement. Further particularities in the mitogenome of <it>C. sinicus </it>include low A + T-content, symmetrical nucleotide composition between strands, abbreviated stop codons for several PCGs and extended lengths of the genes <it>atp6 </it>and <it>atp8 </it>relative to other copepods. The monophyletic Copepoda should be placed within the Vericrustacea. The close affinity between Cyclopoida and Poecilostomatoida suggests reassigning the latter as subordinate to the former. Monophyly of Maxillopoda is rejected. Within the alignment of 11 <it>C. sinicus </it>mitogenomes, there are 397 variable sites harbouring three 'hotspot' variable sites and three microsatellite loci.</p> <p>Conclusion</p> <p>The occurrence of the <it>circular subgenomic fragment </it>during laboratory assays suggests that special caution should be taken when sequencing mitogenomes using long PCR. Such a phenomenon may provide additional evidence of mitochondrial DNA recombination, which appears to have been a prerequisite for shaping the present mitochondrial profile of <it>C. sinicus </it>during its evolution. The lack of synapomorphic gene arrangements among copepods has cast doubt on the utility of gene order as a useful molecular marker for deep phylogenetic analysis. However, mitochondrial genomic sequences have been valuable markers for resolving phylogenetic issues concerning copepods. The variable site maps of <it>C. sinicus </it>mitogenomes provide a solid foundation for population genetic studies.</p
Functional Interactions between Retinoblastoma and c-MYC in a Mouse Model of Hepatocellular Carcinoma
Inactivation of the RB tumor suppressor and activation of the MYC family of oncogenes are frequent events in a large spectrum of human cancers. Loss of RB function and MYC activation are thought to control both overlapping and distinct cellular processes during cell cycle progression. However, how these two major cancer genes functionally interact during tumorigenesis is still unclear. Here, we sought to test whether loss of RB function would affect cancer development in a mouse model of c-MYC-induced hepatocellular carcinoma (HCC), a deadly cancer type in which RB is frequently inactivated and c-MYC often activated. We found that RB inactivation has minimal effects on the cell cycle, cell death, and differentiation features of liver tumors driven by increased levels of c-MYC. However, combined loss of RB and activation of c-MYC led to an increase in polyploidy in mature hepatocytes before the development of tumors. There was a trend for decreased survival in double mutant animals compared to mice developing c-MYC-induced tumors. Thus, loss of RB function does not provide a proliferative advantage to c-MYC-expressing HCC cells but the RB and c-MYC pathways may cooperate to control the polyploidy of mature hepatocytes
Pan-cancer analysis of whole genomes
Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
Novel immunohistochemistry-based signatures to predict metastatic site of triple-negative breast cancers
Background: Although distant metastasis (DM) in breast cancer (BC) is the most lethal form of recurrence and the most commonunderlying cause of cancer related deaths, the outcome following the development of DM is related to the site of metastasis.Triple negative BC (TNBC) is an aggressive form of BC characterised by early recurrences and high mortality. Athough multiplevariables can be used to predict the risk of metastasis, few markers can predict the specific site of metastasis. This study aimed atidentifying a biomarker signature to predict particular sites of DM in TNBC.Methods: A clinically annotated series of 322 TNBC were immunohistochemically stained with 133 biomarkers relevant to BC, todevelop multibiomarker models for predicting metastasis to the bone, liver, lung and brain. Patients who experienced metastasisto each site were compared with those who did not, by gradually filtering the biomarker set via a two-tailed t-test and Coxunivariate analyses. Biomarker combinations were finally ranked based on statistical significance, and evaluated in multivariableanalyses.Results: Our final models were able to stratify TNBC patients into high risk groups that showed over 5, 6, 7 and 8 times higher riskof developing metastasis to the bone, liver, lung and brain, respectively, than low-risk subgroups. These models for predictingsite-specific metastasis retained significance following adjustment for tumour size, patient age and chemotherapy status.Conclusions: Our novel IHC-based biomarkers signatures, when assessed in primary TNBC tumours, enable prediction of specificsites of metastasis, and potentially unravel biomarkers previously unknown in site tropism
- …