14 research outputs found

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Phosphate recovery from exhausted extinguishing powders: A case study of circular economy in the chemical industry

    No full text
    Nowadays in Europe, an exhausted extinguishing powders (EEP) industrial recovering process is still missing, fertilizer demand is increasing, phosphorous is a critical raw material. In this perspective, an EEP treatment pilot plant was realized, allowing the recovery of a high-value, non-renewable raw material, phosphate, transformed into fertilizers. This case study offers an example of circular economy and industrial symbiosis in the chemical industry (EEP are valorised as secondary raw materials in another sector, otherwise disposed of as special waste and not recovered) and highlights how to tackle with chemical processes using waste as secondary raw material. The boundaries choice between first and second life and on how to assess processes comparative analyses are the main critical points to deal with. The innovative PHOSave process is based on a mechanical treatment, a washing phase with an aprotic solvent and a biological treatment. To evaluate its environmental feasibility an LCA study was performed at the design stage. The scenario considered is from cradle-to-gate, from the collected EEP to the micro-fertilizer produced. Life cycle impact assessment of the innovative PHOSave process, using the CML impact method, has demonstrated that solvent choice for the washing phase has a huge influence on the overall environmental performance; in any case, the highest burden comes from the granulation phase
    corecore