108 research outputs found

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Low temperature selective catalytic reduction of NO<sub>x</sub> with NH<sub>3</sub> over Mn-based catalyst: A review

    No full text

    Composite anodes for lithium-ion batteries: status and trends

    No full text

    Recent advances in bioengineering of the oleaginous yeast <em>Yarrowia lipolytica</em>

    No full text

    Dietary influence on estrogens and cytokines in breast cancer

    No full text

    Molecular mechanisms of intestinal inflammation leading to colorectal cancer

    No full text

    Genomic-Glycosylation Aberrations in Tumor Initiation, Progression and Management

    No full text

    mTOR signaling in proteostasis and its relevance to autism spectrum disorders

    No full text
    Proteins are extremely labile cellular components, especially at physiological temperatures. The appropriate regulation of protein levels, or proteostasis, is essential for all cells. In the case of highly polarized cells like neurons, proteostasis is also crucial at synapses, where quick confined changes in protein composition occur to support synaptic activity and plasticity. The accurate regulation of those cellular processes controlling protein synthesis and degradation is necessary for proteostasis, and its deregulation has deleterious consequences in brain function. Alterations in those cellular mechanisms supporting synaptic protein homeostasis have been pinpointed in autism spectrum disorders such as tuberous sclerosis, neurofibromatosis 1, PTEN-related disorders, fragile X syndrome, MECP2 disorders and Angelman syndrome. Proteostasis alterations in these disorders share the alterations in mechanistic/mammalian target of rapamycin (mTOR) signaling pathway, an intracellular pathway with key synaptic roles. The aim of the present review is to describe the recent literature on the major cellular mechanisms involved in proteostasis regulation in the synaptic context, and its association with mTOR signaling deregulations in various autism spectrum disorders. Altogether, the cellular and molecular mechanisms in synaptic proteostasis could be the foundation for novel shared therapeutic strategies that would take advantage of targeting common disorder mechanisms.This review was supported by grant BFU2015-68568-P (MINECO/FEDER, EU) to AO
    corecore