4 research outputs found

    GD-DTPA enhanced MRI of ocular transport in a rat model of chronic glaucoma

    No full text
    Glaucoma is a neurodegenerative disease of the visual system characterized by the elevation of intraocular pressure. While this elevated pressure is related to an increased resistance to the outflow of aqueous humor from the eye, their impacts to the etiology and pathogenesis of the disease are not fully understood. This study aims to employ in vivo Gd-DTPA enhanced magnetic resonance imaging to evaluate the ocular transport following an induction of ocular hypertension in a rat model of chronic glaucoma. An experimental ocular hypertension model was induced in adult rats using an argon laser to photocoagulate the episcleral and limbal veins on the surface of the eyeball. The enhancements of the MRI signal intensity in the anterior chamber and vitreous body were measured as a function of time following systemic administration of Gd-DTPA solution at 3 mmol/kg. Results showed a progressive T1-weighted signal increase in the vitreous body of the glaucomatous eye but not the control eye. This increase occurred earlier in the anterior vitreous body than the preretinal vitreous. Further, there was an earlier Gd-DTPA transport into the anterior chamber in the majority of glaucomatous eyes. Our findings revealed the leakage of Gd-DTPA at the aqueous-vitreous interface, which was likely resulted from increased permeability of blood-aqueous or aqueous-vitreous barrier. These may explain the sources of changing biochemical compositions in the glaucomatous chamber components, which may implicate the cascades of neurodegenerative processes in the retina and the optic nerve. © 2008 Elsevier Ltd. All rights reserved.link_to_subscribed_fulltex

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore