101 research outputs found

    Grid Enabled Geospatial Catalogue Web Service

    Get PDF
    Geospatial Catalogue Web Service is a vital service for sharing and interoperating volumes of distributed heterogeneous geospatial resources, such as data, services, applications, and their replicas over the web. Based on the Grid technology and the Open Geospatial Consortium (0GC) s Catalogue Service - Web Information Model, this paper proposes a new information model for Geospatial Catalogue Web Service, named as GCWS which can securely provides Grid-based publishing, managing and querying geospatial data and services, and the transparent access to the replica data and related services under the Grid environment. This information model integrates the information model of the Grid Replica Location Service (RLS)/Monitoring & Discovery Service (MDS) with the information model of OGC Catalogue Service (CSW), and refers to the geospatial data metadata standards from IS0 19115, FGDC and NASA EOS Core System and service metadata standards from IS0 191 19 to extend itself for expressing geospatial resources. Using GCWS, any valid geospatial user, who belongs to an authorized Virtual Organization (VO), can securely publish and manage geospatial resources, especially query on-demand data in the virtual community and get back it through the data-related services which provide functions such as subsetting, reformatting, reprojection etc. This work facilitates the geospatial resources sharing and interoperating under the Grid environment, and implements geospatial resources Grid enabled and Grid technologies geospatial enabled. It 2!so makes researcher to focus on science, 2nd not cn issues with computing ability, data locztic~, processir,g and management. GCWS also is a key component for workflow-based virtual geospatial data producing

    Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels

    Full text link
    [EN] In this work some relevant processes for the preparation of liquid hydrocarbon fuels and fuel additives from cellulose, hemicellulose and triglycerides derived platform molecules are discussed. Thus, it is shown that a series of platform molecules such as levulinic acid, furans, fatty acids and polyols can be converted into a variety of fuel additives through catalytic transformations that include reduction, esterification, etherification, and acetalization reactions. Moreover, we will show that liquid hydrocarbon fuels can be obtained by combining oxygen removal processes (e.g. dehydration, hydrogenolysis, hydrogenation, decarbonylation/descarboxylation etc.) with the adjustment of the molecular weight via C C coupling reactions (e.g. aldol condensation, hydroxyalkylation, oligomerization, ketonization) of the reactive platform molecules.This work has been supported by the Spanish Government-MINECO through Consolider Ingenio 2010-Multicat and CTQ.-2011-27550, ITQ thanks the "Program Severo Ochoa" for financial support.Climent Olmedo, MJ.; Corma Canós, A.; Iborra Chornet, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry. 16(2):516-547. https://doi.org/10.1039/c3gc41492bS51654716

    Myc and cell cycle control

    Get PDF
    Soon after the discovery of the Myc gene (c-Myc), it became clear thatMyc expression levels tightly correlate to cell proliferation. The entry in cell cycle of quiescent cells upon Myc enforced expression has been described in manymodels. Also, the downregulation or inactivation ofMyc results in the impairment of cell cycle progression. Given the frequent deregulation of Myc oncogene in human cancer it is important to dissect out the mechanisms underlying the role ofMyc on cell cycle control. Several parallel mechanisms account forMyc-mediated stimulation of the cell cycle. First,most of the critical positive cell cycle regulators are encoded by genes induced byMyc. These Myc target genes include Cdks, cyclins and E2F transcription factors. Apart from its direct effects on the transcription, Myc is able to hyperactivate cyclin/Cdk complexes through the induction of Cdk activating kinase (CAK) and Cdc25 phosphatases. Moreover, Myc antagonizes the activity of cell cycle inhibitors as p21 and p27 through different mechanisms. Thus, Myc is able to block p21 transcription or to induce Skp2, a protein involved in p27 degradation. Finally, Myc induces DNA replication by binding to replication origins and by upregulating genes encoding proteins required for replication initiation. Myc also regulates genes involved in the mitotic control. A promising approach to treat tumors with deregulated Myc is the synthetic lethality based on the inhibition of Cdks. Thus, the knowledge of the Myc-dependent cell cycle regulatory mechanisms will help to discover new therapeutic approaches directed against malignancies with deregulated Myc. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.The work in the laboratory of the authors is funded by grants SAF11-23796 from Spanish Ministry of Industry and Innovation, and ISCIII-RETIC RD12/0036/0033 from Spanish Ministry of Health to JL, and FIS 11/00397 to MDD. GB is recipient of a fellowship form the FPI Program. We apologize to colleagues whose work has not been cited in the form of their original papers but in reviews and whose work has not been discussed due to space limitations or unintentional omission

    A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics

    Get PDF
    The nature of dark matter and properties of neutrinos are among the mostpressing issues in contemporary particle physics. The dual-phase xenontime-projection chamber is the leading technology to cover the availableparameter space for Weakly Interacting Massive Particles (WIMPs), whilefeaturing extensive sensitivity to many alternative dark matter candidates.These detectors can also study neutrinos through neutrinoless double-beta decayand through a variety of astrophysical sources. A next-generation xenon-baseddetector will therefore be a true multi-purpose observatory to significantlyadvance particle physics, nuclear physics, astrophysics, solar physics, andcosmology. This review article presents the science cases for such a detector.<br

    A next-generation liquid xenon observatory for dark matter and neutrino physics

    Get PDF
    The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector

    Molecular imprinting science and technology: a survey of the literature for the years 2004-2011

    Full text link

    Sketching out the details: Sketch-based image retrieval using convolutional neural networks with multi-stage regression

    No full text
    We propose and evaluate several deep network architectures for measuring the similarity between sketches and photographs, within the context of the sketch based image retrieval (SBIR) task. We study the ability of our networks to generalize across diverse object categories from limited training data, and explore in detail strategies for weight sharing, pre-processing, data augmentation and dimensionality reduction. In addition to a detailed comparative study of network configurations, we contribute by describing a hybrid multi-stage training network that exploits both contrastive and triplet networks to exceed state of the art performance on several SBIR benchmarks by a significant margin
    corecore