252 research outputs found

    Design, synthesis, and applications of bio-derived crosslinking monomers for molecular imprinting

    Get PDF
    Most of the research in the field of molecular imprinting has been focused on the development of new functional monomers, in order to improve the molecular recognition properties afforded by these materials. The role of the crosslinking monomer has often been overlooked, since it is considered an inert component that only provides a scaffold to support the binding sites. However, the crosslinking monomer represents a high percent (80-90%) of the composition of molecularly imprinted polymers (MIPs), which can have a large influence on the MIPs properties. This research addresses the design, synthesis, and applications of new crosslinking monomers for molecular imprinting. Crosslinking monomers containing different polymerizable groups (methacrylate/methacrylamide, methacrylamide/vinylketone, and methacrylate/vinyl ketone) were synthesized and used to prepare MIPs. Key steps in the synthesis of these monomers involved the use enzymatic methodologies to selectively deprotect methyl esters. To avoid an undesirable intramolecular Michael addition, N-methyl-N-methoxy amides derivatives were used as electrophiles to introduce the vinylketone functionality via nucleophilic addition of a Grignard reagent. Enhancement in molecular recognition properties exhibited by MIPs prepared with crosslinking monomers incorporating the amide functionality was attributed to cooperative interactions within the crosslinking with the template molecule, as well as an improved morphology that arises from the reactivity differential of the polymerizable groups. Incorporation of the binding functionality in a crosslinking format allowed to maximize the degree of crosslinking without imposing restrictions on functional group concentrations. An important breakthrough for the simplification of the molecular imprinting process was achieved by the use of a one single monomer, which incorporates an amide functionality for binding the template molecule and the polymerizable groups to form the polymeric network. The advantage of using this single monomer is that there is not need to optimize the functional/crosslinking monomer ratio. The strategy of using functionalized crosslinking monomers derived from natural amino acids, to provide the functional groups for catalytic activity was investigated using a combinatorial approach for fast screening. Finally, modification of biological matrices using bioimprinting methodologies was explored by imprinting a Class I aldolase antibody with an aldol reaction product in order to improve its catalytic activity in organic solvents

    Из опыта работы кафедры по организации учебной и воспитательной работы с иностранными студентами

    Get PDF
    Одна из ярких черт современного высшего образования - его интернационализация. Для Брестского государственного университета имени А.С. Пушкина в процессе интернационализации одним из новых, но перспективных её направлений является экспорт образовательных услуг. Появление в университете данной категории обучающихся (с 2007 г.) внесло коррективы и в организацию учебного процесса, и во внеучебную деятельность

    Far-Red and Near-Infrared Seminaphthofluorophores for Targeted Pancreatic Cancer Imaging

    Get PDF
    Molecular probes that selectively highlight pancreatic cancer (PC) tissue have the potential to improve pancreatic ductal adenocarcinoma (PDAC) margin assessment through the selective highlighting of individual PC cells. Herein, we report a simple and unique family of systematically modified red and near-infrared fluorescent probes that exhibit a field-effect-derived redshift. Two of thirteen probes distributed to the normal mouse pancreas following systemic administration. One selectively accumulated in genetically modified mouse models of PDAC. The probe exhibited intracellular accumulation and enabled visualization of four levels of the structure, including the whole organ, resected tissue, individual cells, and subcellular organelles. In contrast to the small-molecule probes reported previously, it possesses an inherent affinity toward PDAC cells and thus does not require conjugation to any targeting agent. The fluorescent probe can thus promote new strategies not only for precision image-guided surgery, but also for PC detection, monitoring of therapeutic outcomes, and basic research

    Seminaphthofluorones are a family of water-soluble, low molecular weight, NIR-emitting fluorophores

    Get PDF
    A readily accessible new class of near infrared (NIR) molecular probes has been synthesized and evaluated. Specific fluorophores in this unique xanthene based regioisomeric seminaphthofluorone dye series exhibit a combination of desirable characteristics including (i) low molecular weight (339 amu), (ii) aqueous solubility, and (iii) dual excitation and emission from their fluorescent neutral and anionic forms. Importantly, systematic changes in the regiochemistry of benzannulation and the ionizable moieties afford (iv) tunable deep-red to NIR emission from anionic species and (v) enhanced Stokes shifts. Anionic SNAFR-6, exhibiting an unusually large Stokes shift of ≈200 nm (5,014 cm−1) in aqueous buffer, embodies an unprecedented fluorophore that emits NIR fluorescence when excited in the blue/green wavelength region. The successful use of SNAFR-6 in cellular imaging studies demonstrates proof-of-concept that this class of dyes possesses photophysical characteristics that allow their use in practical applications. Notably, each of the new fluorophores described is a minimal template structure for evaluation of their basic spectral properties, which may be further functionalized and optimized yielding concomitant improvements in their photophysical properties

    Dimethyl Sulfoxide (DMSO) Exacerbates Cisplatin-induced Sensory Hair Cell Death in Zebrafish (Danio rerio)

    Get PDF
    Inner ear sensory hair cells die following exposure to aminoglycoside antibiotics or chemotherapeutics like cisplatin, leading to permanent auditory and/or balance deficits in humans. Zebrafish (Danio rerio) are used to study drug-induced sensory hair cell death since their hair cells are similar in structure and function to those found in humans. We developed a cisplatin dose-response curve using a transgenic line of zebrafish that expresses membrane-targeted green fluorescent protein under the control of the Brn3c promoter/enhancer. Recently, several small molecule screens have been conducted using zebrafish to identify potential pharmacological agents that could be used to protect sensory hair cells in the presence of ototoxic drugs. Dimethyl sulfoxide (DMSO) is typically used as a solvent for many pharmacological agents in sensory hair cell cytotoxicity assays. Serendipitously, we found that DMSO potentiated the effects of cisplatin and killed more sensory hair cells than treatment with cisplatin alone. Yet, DMSO alone did not kill hair cells. We did not observe the synergistic effects of DMSO with the ototoxic aminoglycoside antibiotic neomycin. Cisplatin treatment with other commonly used organic solvents (i.e. ethanol, methanol, and polyethylene glycol 400) also did not result in increased cell death compared to cisplatin treatment alone. Thus, caution should be exercised when interpreting data generated from small molecule screens since many compounds are dissolved in DMSO.National Institutes of Health (U.S.) (DC010998)National Institutes of Health (U.S.) (NIH DC010231)Harvard College (1780- )Sarah Fuller Foundation for Little Deaf Childre

    Homocysteinylated Albumin Promotes Increased Monocyte-Endothelial Cell Adhesion and Up-Regulation of MCP1, Hsp60 and ADAM17

    Get PDF
    RATIONALE:The cardiovascular risk factor homocysteine is mainly bound to proteins in human plasma, and it has been hypothesized that homocysteinylated proteins are important mediators of the toxic effects of hyperhomocysteinemia. It has been recently demonstrated that homocysteinylated proteins are elevated in hemodialysis patients, a high cardiovascular risk population, and that homocysteinylated albumin shows altered properties. OBJECTIVE:Aim of this work was to investigate the effects of homocysteinylated albumin - the circulating form of this amino acid, utilized at the concentration present in uremia - on monocyte adhesion to a human endothelial cell culture monolayer and the relevant molecular changes induced at both cell levels. METHODS AND RESULTS:Treated endothelial cells showed a significant increase in monocyte adhesion. Endothelial cells showed after treatment a significant, specific and time-dependent increase in ICAM1 and VCAM1. Expression profiling and real time PCR, as well as protein analysis, showed an increase in the expression of genes encoding for chemokines/cytokines regulating the adhesion process and mediators of vascular remodeling (ADAM17, MCP1, and Hsp60). The mature form of ADAM17 was also increased as well as Tnf-α released in the cell medium. At monocyte level, treatment induced up-regulation of ICAM1, MCP1 and its receptor CCR2. CONCLUSIONS:Treatment with homocysteinylated albumin specifically increases monocyte adhesion to endothelial cells through up-regulation of effectors involved in vascular remodeling

    Like a bolt from the blue : phthalocyanines in biomedical optics

    Get PDF
    The purpose of this review is to compile preclinical and clinical results on phthalocyanines (Pcs) as photosensitizers (PS) for Photodynamic Therapy (PDT) and contrast agents for fluorescence imaging. Indeed, Pcs are excellent candidates in these fields due to their strong absorbance in the NIR region and high chemical and photo-stability. In particular, this is mostly relevant for their in vivo activation in deeper tissular regions. However, most Pcs present two major limitations, i.e., a strong tendency to aggregate and a low water-solubility. In order to overcome these issues, both chemical tuning and pharmaceutical formulation combined with tumor targeting strategies were applied. These aspects will be developed in this review for the most extensively studied Pcs during the last 25 years, i.e., aluminium-, zinc- and silicon-based Pcs

    Zinc Phthalocyanine−Graphene Hybrid Material for Energy Conversion: Synthesis, Characterization, Photophysics and Photoelectrochemical Cell Preparation

    Get PDF
    Graphene exfoliation upon tip sonication in o-­‐DCB was accomplished. Then, covalent grafting of (2-­‐ aminoethoxy)(tri-­‐tert-­‐butyl) zinc phthalocyanine (ZnPc), to exfoliated graphene sheets was achieved. The newly formed ZnPc-­‐graphene hybrid material was found soluble in common organic solvents without any precipitation for several weeks. Application of diverse spectroscopic techniques verified the successful formation of ZnPc-­‐graphene hybrid materi-­‐ al, while thermogravimetric analysis revealed the amount of ZnPc loading onto graphene. Microscopy analysis based on AFM and TEM was applied to probe the morphological characteristics and to investigate the exfoliation of graphene sheets. Efficient fluorescence quenching of ZnPc in the ZnPc-­‐graphene hybrid material suggested that photoinduced events occur from the photoexcited ZnPc to exfoliated graphene. The dynamics of the photoinduced electron transfer was evaluated by femtosecond transient absorption spectroscopy, thus, revealing the formation of transient species such as ZnPc+ yielding the charge-­‐separated state ZnPc•+–graphene•–. Finally, the ZnPc-­‐graphene hybrid material was integrated into a photoactive electrode of an optical transparent electrode (OTE) cast with nanostructured SnO2 films (OTE/SnO2), which exhibited sta le and reproducible photocurrent responses and the incident photon-­‐to-­‐current conversion efficien-­‐ cy was determine
    corecore