1,157 research outputs found

    Naked-eye detection of morphine by Au@Ag nanoparticles-based colorimetric chemosensors

    Get PDF
    In this study, we report a novel and facile colorimetric assay based on silver citrate-coated Au@Ag nanoparticles (Au@AgNPs) as a chemosensor for the naked-eye detection of morphine (MOR). The developed optical sensing approach relied on the aggregation of Au@Ag NPs upon exposure to morphine, which led to an evident color variation from light-yellow to brown. Au@Ag NPs have been prepared by two different protocols, using high- and low-power ultrasonic irradiation. The sonochemical method was essential for the sensing properties of the resulting nanoparticles. This facile sensing method has several advantages including excellent stability, selectivity, prompt detection, and cost-effectiveness

    Recent advances in chemical sensors for soil analysis: a review

    Get PDF
    The continuously rising interest in chemical sensors' applications in environmental monitoring, for soil analysis in particular, is owed to the sufficient sensitivity and selectivity of these analytical devices, their low costs, their simple measurement setups, and the possibility to perform online and in-field analyses with them. In this review the recent advances in chemical sensors for soil analysis are summarized. The working principles of chemical sensors involved in soil analysis; their benefits and drawbacks; and select applications of both the single selective sensors and multisensor systems for assessments of main plant nutrition components, pollutants, and other important soil parameters (pH, moisture content, salinity, exhaled gases, etc.) of the past two decades with a focus on the last 5 years (from 2017 to 2021) are overviewed

    The long-lasting story of one sensor development: from novel ionophore design toward the sensor selectivity modeling and lifetime improvement

    Get PDF
    The metalloporphyrin ligand bearing incorporated anion-exchanger fragment, 5-[4-(3-trimethylammonium)propyloxyphenyl]-10,15,20-triphenylporphyrinate of Co(II) chloride, CoTPP-N, has been tested as anion-selective ionophore in PVC-based solvent polymeric membrane sensors. A plausible sensor working mechanism includes the axial coordination of the target anion on ionophore metal center followed by the formed complex aggregation with the second ionophore molecule through positively charged anion-exchanger fragment. The UV-visible spectroscopic studies in solution have revealed that the analyte concentration increase induces the J-type porphyrin aggregation. Polymeric membranes doped with CoTPP-N showed close to the theoretical Nernstian response toward nitrite ion, preferably coordinated by the ionophore, and were dependent on the presence of additional membrane-active components (lipophilic ionic sites and ionophore) in the membrane phase. The resulting selectivity was a subject of specific interaction and/or steric factors. Moreover, it was demonstrated theoretically and confirmed experimentally that the selection of a proper ratio of ionophore and anionic additive can optimize the sensor selectivity and lifetime

    Keeping track of phaeodactylum tricornutum (Bacillariophyta) culture contamination by potentiometric e-tongue

    Get PDF
    The large-scale cultivation of microalgae provides a wide spectrum of marketable bioproducts, profitably used in many fields, from the preparation of functional health products and feed supplement in aquaculture and animal husbandry to biofuels and green chemistry agents. The commercially successful algal biomass production requires effective strategies to maintain the process at desired productivity and stability levels. Hence, the development of effective early warning methods to timely indicate remedial actions and to undertake countermeasures is extremely important to avoid culture collapse and consequent economic losses. With the aim to develop an early warning method of algal contamination, the potentiometric E-tongue was applied to record the variations in the culture environments, over the whole growth process, of two unialgal cultures, Phaeodactylum tricornutum and a microalgal contaminant, along with those of their mixed culture. The E-tongue system ability to distinguish the cultures and to predict their growth stage, through the application of multivariate data analysis, was shown. A PLS regression method applied to the E-tongue output data allowed a good prediction of culture growth time, expressed as growth days, with R-2 values in a range from 0.913 to 0.960 and RMSEP of 1.97-2.38 days. Moreover, the SIMCA and PLS-DA techniques were useful for cultures contamination monitoring. The constructed PLS-DA model properly discriminated 67% of cultures through the analysis of their growth media, i.e., environments, thus proving the potential of the E-tongue system for a real time monitoring of contamination in microalgal intensive cultivation

    Drift Correction in a Porphyrin-coated ZnO Nanorods Gas Sensor

    Get PDF
    AbstractPhotoconductivity and gas sensitivity cooperate in porphyrins coated ZnO nanostructures. However, in organic coated semiconductors the former is regulated by a number of mechanisms, involving the charge transfer in the organic layer. Since organic layers are poor conductors these processes are quite slow and the sensor may exhibits a long time drift before to be operative as gas sensor. In this paper we show that under light modulation, the carrier frequency component of the signal is free of drift and it can readily indicate the interaction with volatile compounds

    MCD and MCPL characterization of luminescent Si(IV) and P(V) tritolylcorroles: the role of coordination number

    Get PDF
    Two triarylcorrole complexes, (hydroxy)[5,10,15-tritolylcorrolato]silicon-(TTC)Si(OH) and (dihydroxy)[5,10,15-tritolylcorrolato]phosphorous-(TTC)P(OH)2, have been investigated by magnetic circular dichroism (MCD) and magnetic circularly polarized luminescence (MCPL). The spectroscopic investigations have been combined with explicit calculation of MCD response through time-dependent density functional theory (TD-DFT) formalism. This has allowed us to better define the role of molecular orbitals in the transitions associated with the Soret and Q bands. Besides and more importantly, MCD has made it possible to follow the titration process of (TTC)Si(OH) in dimethyl sulfoxide (DMSO) solution with NaF and of (TTC)P(OH)2 in dichloromethane solution with alcohols in a complementary and, we dare say, more sensitive way with respect to absorption and fluorescence data. Finally, the MCPL spectra and the ancillary TD-DFT calculations have allowed us to characterize the excited state of (TTC)Si(OH). © 2021 The Authors. Published by American Chemical Society

    Porphyrin-Based Nanostructures for Sensing Applications

    Get PDF
    The construction of nanosized supramolecular hosts via self-assembly of molecular components is a fascinating field of research. Such intriguing class of architectures, beside their intrinsic intellectual stimuli, is of importance in many fields of chemistry and technology, such as material chemistry, catalysis, and sensor applications. Within this wide scenario, tailored solid films of porphyrin derivatives are structures of great potential for, among others, chemical sensor applications. The formation ofsupramoleculesrelays on noncovalent interactions (electrostatic, hydrogen bond, , or coordinative interactions) driven by the chemical information stored on the assembling molecules, such as shape and functional groups. This allows, for example, the formation of large well-defined porphyrin aggregates in solution that can be spontaneously transferred onto a solid surface, so achieving a solid system with tailored features. These films have been used, covering the bridge between nanostructures and microsystems, for the construction of solid-state sensors for volatiles and metal ion recognition and detection. Moreover, the variation of peripheral substituents of porphyrins, such as, for example, chiral appended functionalities, can result in the formation of porphyrin aggregates featuring high supramolecular chirality. This would allow the achievement of porphyrin layers characterised by different chiroptical and molecular recognition properties

    fish freshness decay measurement with a colorimetric artificial olfactory system

    Get PDF
    Abstract This paper reports about the application of an artificial olfactory system based on optical imaging technology. This arrangement is formed by a distributed layer of chemical indicators illuminated by a computer screen and imaged by a digital camera. The system has been applied to monitor the freshness decay in fish. The set of indicators is formed by porphyrinoids and acid–base indicators, this combination provides an optimal capture of the process with some of the indicators sensitive to first stage, when the product is still fresh, and others more sensitive to the last part of the freshness deca

    The skeleton counts! A study of the porphyrinoid structure’s influence on sensing properties

    Get PDF
    A series of porphyrinoids has been tested as sensing layers for the development of nanogravimetric chemical sensors using quartz crystal microbalances (QMB) as transducers. The macrocycles have been studied as Ni complexes, Cu in the case of corrole, to elucidate the influence of the molecular skeleton on the sensing properties of the related sensors. For the first time, subphthalocyanines have been tested in sensor applications. The study has been carried out by testing different volatile organic compounds chosen as model analytes. The results obtained demonstrate that the exploitation of different porphyrinoids offers useful insights for the development of cross-sensitive sensor arrays and can open novel perspectives for their applications in the sensor field
    corecore