9,757 research outputs found

    Synthesis and characterization of the all-silica pure polymorph C, and the enriched polymorph B intergrowth material of Beta zeolite

    Full text link
    Cantin Sanz, A.; Corma Canós, A.; Díaz Cabañas, MJ.; Jorda Moret, JL.; Moliner Marin, M.; Rey Garcia, F. (2006). Synthesis and characterization of the all-silica pure polymorph C, and the enriched polymorph B intergrowth material of Beta zeolite. Angewandte Chemie International Edition. 45(47):8013-8015. doi:10.1002/anie.200603027S80138015454

    Synthesis of cocrystallized USY/ZSM-5 zeolites from kaolin and its use as fluid catalytic cracking catalysts

    Full text link
    [EN] A series of samples of cocrystallized USY/ZSM-5 zeolites were synthesized from kaolin and silica following a sequential two-step procedure with varying content of ZSM-5 (5-25 wt%). The presence of the ZSM-5 phases was confirmed by XRD and Si-29-NMR. The samples were stabilized by steaming and tested as FCC catalysts in the cracking of vacuum gasoil. The results obtained show that effectiveness of ZSM-5 as a propylene booster is enhanced when zeolites USY and ZSM-5 were synthesized in the same kaolin material, instead of using merely the physical mixtures of the two zeolites. This enhancement is attributed to the higher ability of ZSM-5 to crack larger olefins and suppress hydrogen-transfer to the gasoline fraction when the zeolites are grown together.This work has been supported by the Spanish Government MINECO through "Severo Ochoa" SEV-2016-0683, CTQ2015-67592-P and CTQ2015-68951-C3-1-R, by the European Union through ERC-AdG-2014-671093 (SynCatMatch) and by the Fundacion Ramon Areces through a research contract of the "Life and Materials Science" program. The Electron Microscopy Service of the UPV is acknowledged for their help in sample characterization.Ghrib, Y.; Frini-Srasra, N.; Srasra, E.; Martínez-Triguero, J.; Corma Canós, A. (2018). Synthesis of cocrystallized USY/ZSM-5 zeolites from kaolin and its use as fluid catalytic cracking catalysts. Catalysis Science & Technology. 8(3):716-725. https://doi.org/10.1039/c7cy01477eS71672583Corma, A., & Wojciechowski, B. W. (1985). The Chemistry of Catalytic Cracking. Catalysis Reviews, 27(1), 29-150. doi:10.1080/01614948509342358Martínez, C., & Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 255(13-14), 1558-1580. doi:10.1016/j.ccr.2011.03.014O’Connor, P. (2007). Chapter 15 Catalytic cracking: The Future of an Evolving Process. Studies in Surface Science and Catalysis, 227-251. doi:10.1016/s0167-2991(07)80198-4Biswas, J., & Maxwell, I. E. (1990). Recent process- and catalyst-related developments in fluid catalytic cracking. Applied Catalysis, 63(1), 197-258. doi:10.1016/s0166-9834(00)81716-9CORMA, A., HUBER, G., SAUVANAUD, L., & OCONNOR, P. (2007). Processing biomass-derived oxygenates in the oil refinery: Catalytic cracking (FCC) reaction pathways and role of catalyst. Journal of Catalysis, 247(2), 307-327. doi:10.1016/j.jcat.2007.01.023Corma, A., & Sauvanaud, L. (2013). FCC testing at bench scale: New units, new processes, new feeds. Catalysis Today, 218-219, 107-114. doi:10.1016/j.cattod.2013.03.038Buchanan, J. . (2000). The chemistry of olefins production by ZSM-5 addition to catalytic cracking units. Catalysis Today, 55(3), 207-212. doi:10.1016/s0920-5861(99)00248-5Adewuyi, Y. G., Klocke, D. J., & Buchanan, J. S. (1995). Effects of high-level additions of ZSM-5 to a fluid catalytic cracking (FCC) RE-USY catalyst. Applied Catalysis A: General, 131(1), 121-133. doi:10.1016/0926-860x(95)00124-7Woltermann, G. M., Magee, J. S., & Griffith, S. D. (1993). Chapter 4 Commercial Preparation and Characterization of FCC Catalysts. Fluid Catalytic Cracking: Science and Technology, 105-144. doi:10.1016/s0167-2991(08)63827-6Xu, M., Cheng, M., & Bao, X. (2000). Growth of ultrafine zeolite Y crystals on metakaolin microspheres. Chemical Communications, (19), 1873-1874. doi:10.1039/b005787hLi, T., Liu, H., Fan, Y., Yuan, P., Shi, G., Bi, X. T., & Bao, X. (2012). Synthesis of zeolite Y from natural aluminosilicate minerals for fluid catalytic cracking application. Green Chemistry, 14(12), 3255. doi:10.1039/c2gc36101aWei, B., Liu, H., Li, T., Cao, L., Fan, Y., & Bao, X. (2010). Natural rectorite mineral: A promising substitute of kaolin for in-situ synthesis of fluid catalytic cracking catalysts. AIChE Journal, 56(11), 2913-2922. doi:10.1002/aic.12195Ding, J., Liu, H., Yuan, P., Shi, G., & Bao, X. (2013). Catalytic Properties of a Hierarchical Zeolite Synthesized from a Natural Aluminosilicate Mineral without the Use of a Secondary Mesoscale Template. ChemCatChem, 5(8), 2258-2269. doi:10.1002/cctc.201300049Yue, Y., Liu, H., Yuan, P., Li, T., Yu, C., Bi, H., & Bao, X. (2014). From natural aluminosilicate minerals to hierarchical ZSM-5 zeolites: A nanoscale depolymerization–reorganization approach. Journal of Catalysis, 319, 200-210. doi:10.1016/j.jcat.2014.08.009Holmes, S. M., Khoo, S. H., & Kovo, A. S. (2011). The direct conversion of impure natural kaolin into pure zeolite catalysts. Green Chemistry, 13(5), 1152. doi:10.1039/c1gc15099eMintova, S., Valtchev, V., Vultcheva, E., & Veleva, S. (1992). Crystallization kinetics of zeolite ZSM-5. Zeolites, 12(2), 210-215. doi:10.1016/0144-2449(92)90086-5P. H. Schipper , F. G.Dwyer , P. T.Sparrell , S.Mizrahi and J. A.Herbst , in Fluid Catalytic Cracking , American Chemical Society , 1988 , ch. 5, vol. 375 , pp. 64–86Degnan, T. F., Chitnis, G. K., & Schipper, P. H. (2000). History of ZSM-5 fluid catalytic cracking additive development at Mobil. Microporous and Mesoporous Materials, 35-36, 245-252. doi:10.1016/s1387-1811(99)00225-5Corma, A., & Martínez-Triguero, J. (1994). Kinetics of gasoil cracking and catalyst decay on SAPO-37 and USY molecular sieves. Applied Catalysis A: General, 118(2), 153-162. doi:10.1016/0926-860x(94)80310-2Corma, A., Martı́nez-Triguero, J., & Martı́nez, C. (2001). The Use of ITQ-7 as a FCC Zeolitic Additive. Journal of Catalysis, 197(1), 151-159. doi:10.1006/jcat.2000.3065Goodyear, J., & Duffin, W. J. (1961). An X-ray examination of an exceptionally well crystallized kaolinite. Mineralogical Magazine and Journal of the Mineralogical Society, 32(254), 902-907. doi:10.1180/minmag.1961.032.254.05Salter, T. L., & Riley, W. E. (1994). Quartz determination in kaolin at the 0.1% level. Analytica Chimica Acta, 286(1), 49-55. doi:10.1016/0003-2670(94)80175-4JOHNSON, M. (1978). Estimation of the zeolite content of a catalyst from nitrogen adsorption isotherms. Journal of Catalysis, 52(3), 425-431. doi:10.1016/0021-9517(78)90346-9Peters, A. W. (1993). Chapter 6 Instrumental Methods of FCC Catalyst Characterization. Fluid Catalytic Cracking: Science and Technology, 183-221. doi:10.1016/s0167-2991(08)63829-xBLASCO, T., CORMA, A., & MARTINEZTRIGUERO, J. (2006). Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition. Journal of Catalysis, 237(2), 267-277. doi:10.1016/j.jcat.2005.11.011Corma, A., Fornes, V., Kolodziejski, W., & Martineztriguero, L. J. (1994). Orthophosphoric Acid Interactions with Ultrastable Zeolite-Y: Infrared and NMR Studies. Journal of Catalysis, 145(1), 27-36. doi:10.1006/jcat.1994.1004Klinowski, J. (1991). Solid-state NMR studies of molecular sieve catalysts. Chemical Reviews, 91(7), 1459-1479. doi:10.1021/cr00007a010Engelhardt, G., Lohse, U., Samoson, A., Mägi, M., Tarmak, M., & Lippmaa, E. (1982). High resolution 29Si n.m.r. of dealuminated and ultrastable Y-zeolites. Zeolites, 2(1), 59-62. doi:10.1016/s0144-2449(82)80042-0Biswas, J., & Maxwell, I. E. (1990). Octane enhancement in fluid catalytic cracking. Applied Catalysis, 58(1), 1-18. doi:10.1016/s0166-9834(00)82274-5WIELERS, A. (1991). Relation between properties and performance of zeolites in paraffin cracking. Journal of Catalysis, 127(1), 51-66. doi:10.1016/0021-9517(91)90208-lHaas, A., Finger, K.-E., & Alkemade, U. (1994). Application of the energy gradient selectivity concept to fluid catalytic cracking catalysts. Applied Catalysis A: General, 115(1), 103-120. doi:10.1016/0926-860x(94)80381-

    Layered zeolitic materials: an approach to designing versatile functional solids

    Full text link
    Relevant layered zeolites have been considered in this perspective article from the point of view of the synthesis methodologies, materials characterization and catalytic implications, considering the unique physico-chemical characteristics of lamellar materials. The potential of layered zeolitic precursors to generate novel lamellar accessible zeolites through swelling, intercalation, pillarization, delamination and/ or exfoliation treatments is studied, showing the chemical, functional and structural versatility exhibited by layered zeolites. Recent approaches based on the assembly of zeolitic nanosheets which act as inorganic structural units through the use of dual structural directing agents, the selective modification of germanosilicates and the direct generation of lamellar hybrid organic inorganic aluminosilicates are also considered to obtain layered solids with well-defined functionalities. The catalytic applications of the layered zeolites are also highlighted, pointing out the high accessibility and reactivity of active sites present in the lamellar framework.The authors thank financial support to Spanish Government by Consolider-Ingenio MULTICAT CSD2009-00050, MAT2011-29020-C02-01 and Severo Ochoa Excellence Program SEV-2012-0267.Díaz Morales, UM.; Corma Canós, A. (2014). Layered zeolitic materials: an approach to designing versatile functional solids. Dalton Transactions. 43(27):10292-10316. https://doi.org/10.1039/c3dt53181cS10292103164327Mallouk, T. E., & Gavin, J. A. (1998). Molecular Recognition in Lamellar Solids and Thin Films. Accounts of Chemical Research, 31(5), 209-217. doi:10.1021/ar970038pSuslick, K. S., & Price, G. J. (1999). APPLICATIONS OF ULTRASOUND TO MATERIALS CHEMISTRY. Annual Review of Materials Science, 29(1), 295-326. doi:10.1146/annurev.matsci.29.1.295Du, X., Zhang, D., Gao, R., Huang, L., Shi, L., & Zhang, J. (2013). Design of modular catalysts derived from NiMgAl-LDH@m-SiO2 with dual confinement effects for dry reforming of methane. Chemical Communications, 49(60), 6770. doi:10.1039/c3cc42418aLi, H., Zhang, D., Maitarad, P., Shi, L., Gao, R., Zhang, J., & Cao, W. (2012). In situ synthesis of 3D flower-like NiMnFe mixed oxides as monolith catalysts for selective catalytic reduction of NO with NH3. Chemical Communications, 48(86), 10645. doi:10.1039/c2cc34758jWang, H., Zhang, D., Yan, T., Wen, X., Shi, L., & Zhang, J. (2012). Graphene prepared via a novel pyridine–thermal strategy for capacitive deionization. Journal of Materials Chemistry, 22(45), 23745. doi:10.1039/c2jm35340gZhang, D., Yan, T., Shi, L., Peng, Z., Wen, X., & Zhang, J. (2012). Enhanced capacitive deionization performance of graphene/carbon nanotube composites. Journal of Materials Chemistry, 22(29), 14696. doi:10.1039/c2jm31393fRavishankar, R., Joshi, P. N., Tamhankar, S. S., Sivasanker, S., & Shiralkar, V. P. (1998). A Novel Zeolite MCM-22: Sorption Characteristics. Adsorption Science & Technology, 16(8), 607-621. doi:10.1177/026361749801600803Roth, W. J., & Dorset, D. L. (2011). Expanded view of zeolite structures and their variability based on layered nature of 3-D frameworks. Microporous and Mesoporous Materials, 142(1), 32-36. doi:10.1016/j.micromeso.2010.11.007Roth, W. J., & Čejka, J. (2011). Two-dimensional zeolites: dream or reality? Catalysis Science & Technology, 1(1), 43. doi:10.1039/c0cy00027bLeonowicz, M. E., Lawton, J. A., Lawton, S. L., & Rubin, M. K. (1994). MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264(5167), 1910-1913. doi:10.1126/science.264.5167.1910Lawton, S. L., Fung, A. S., Kennedy, G. J., Alemany, L. B., Chang, C. D., Hatzikos, G. H., … Woessner, D. E. (1996). Zeolite MCM-49:  A Three-Dimensional MCM-22 Analogue Synthesized byin SituCrystallization. The Journal of Physical Chemistry, 100(9), 3788-3798. doi:10.1021/jp952871eKennedy, G. J., Lawton, S. L., Fung, A. S., Rubin, M. K., & Steuernagel, S. (1999). Multinuclear MAS NMR studies of zeolites MCM-22 and MCM-49. Catalysis Today, 49(4), 385-399. doi:10.1016/s0920-5861(98)00444-1Santos Marques, A. L., Fontes Monteiro, J. L., & Pastore, H. O. (1999). Static crystallization of zeolites MCM-22 and MCM-49. Microporous and Mesoporous Materials, 32(1-2), 131-145. doi:10.1016/s1387-1811(99)00099-2Vuono, D., Pasqua, L., Testa, F., Aiello, R., Fonseca, A., Korányi, T. I., & Nagy, J. B. (2006). Influence of NaOH and KOH on the synthesis of MCM-22 and MCM-49 zeolites. Microporous and Mesoporous Materials, 97(1-3), 78-87. doi:10.1016/j.micromeso.2006.07.015Corma, A., Corell, C., Pérez-Pariente, J., Guil, J. M., Guil-López, R., Nicolopoulos, S., … Vallet-Regi, M. (1996). Adsorption and catalytic properties of MCM-22: The influence of zeolite structure. Zeolites, 16(1), 7-14. doi:10.1016/0144-2449(95)00084-4Ravishankar, R., Sen, T., Ramaswamy, V., Soni, H. S., Ganapathy, S., & Sivasanker., S. (1994). Synthesis, Characterization and Catalytic properties of Zeolite PSH-3/MCM-22. Zeolites and Related Microporous Materials: State of the Art 1994 - Proceedings of the 10th International Zeolite Conference, Garmisch-Partenkirchen, Germany, 17-22 July 1994, 331-338. doi:10.1016/s0167-2991(08)64131-2Güray, I., Warzywoda, J., Baç, N., & Sacco, A. (1999). Synthesis of zeolite MCM-22 under rotating and static conditions. Microporous and Mesoporous Materials, 31(3), 241-251. doi:10.1016/s1387-1811(99)00075-xWang, Y.-M., Shu, X.-T., & He, M.-Y. (2001). 02-P-34 - Static synthesis of zeolite MCM-22. Zeolites and Mesoporous Materials at the dawn of the 21st century, Proceedings of the 13th International Zeolite Conference,, 194. doi:10.1016/s0167-2991(01)81373-2Chan, I. Y., Labun, P. A., Pan, M., & Zones, S. I. (1995). High-resolution electron microscopy characterization of SSZ-25 zeolite. Microporous Materials, 3(4-5), 409-418. doi:10.1016/0927-6513(94)00050-6Camblor, M. A., Corma, A., Díaz-Cabañas, M.-J., & Baerlocher, C. (1998). Synthesis and Structural Characterization of MWW Type Zeolite ITQ-1, the Pure Silica Analog of MCM-22 and SSZ-25. The Journal of Physical Chemistry B, 102(1), 44-51. doi:10.1021/jp972319kAguilar, J., Corma, A., Melo, F. V., & Sastre, E. (2000). Alkylation of biphenyl with propylene using acid catalysts. Catalysis Today, 55(3), 225-232. doi:10.1016/s0920-5861(99)00250-3Camblor, M. A., Corell, C., Corma, A., Díaz-Cabañas, M.-J., Nicolopoulos, S., González-Calbet, J. M., & Vallet-Regí, M. (1996). A New Microporous Polymorph of Silica Isomorphous to Zeolite MCM-22. Chemistry of Materials, 8(10), 2415-2417. doi:10.1021/cm960322vNicolopoulos, S., González-Calbet, J. M., Vallet-Regi, M., Camblor, M. A., Corell, C., Corma, A., & Diaz-Cabañas, M. J. (1997). Use of Electron Microscopy and Microdiffraction for Zeolite Framework Comparison. Journal of the American Chemical Society, 119(45), 11000-11005. doi:10.1021/ja963703iMillini, R., Perego, G., Parker, W. O., Bellussi, G., & Carluccio, L. (1995). Layered structure of ERB-1 microporous borosilicate precursor and its intercalation properties towards polar molecules. Microporous Materials, 4(2-3), 221-230. doi:10.1016/0927-6513(95)00013-yKhouw, C. B., & Davis, M. E. (1995). Catalytic Activity of Titanium Silicates Synthesized in the Presence of Alkali-Metal and Alkaline-Earth Ions. Journal of Catalysis, 151(1), 77-86. doi:10.1006/jcat.1995.1010Wu, P., Tatsumi, T., Komatsu, T., & Yashima, T. (2001). A Novel Titanosilicate with MWW Structure: II. Catalytic Properties in the Selective Oxidation of Alkenes. Journal of Catalysis, 202(2), 245-255. doi:10.1006/jcat.2001.3278Wu, P., Tatsumi, T., Komatsu, T., & Yashima, T. (2001). A Novel Titanosilicate with MWW Structure. I. Hydrothermal Synthesis, Elimination of Extraframework Titanium, and Characterizations. The Journal of Physical Chemistry B, 105(15), 2897-2905. doi:10.1021/jp002816sWu, P., & Tatsumi, T. (2001). Extremely high trans selectivity of Ti-MWW in epoxidation of alkenes with hydrogen peroxide. Chemical Communications, (10), 897-898. doi:10.1039/b101426iSasidharan, M., Wu, P., & Tatsumi, T. (2002). Epoxidation of α,β-Unsaturated Carbonyl Compounds over Various Titanosilicates. Journal of Catalysis, 205(2), 332-338. doi:10.1006/jcat.2001.3440Wu, P., & Tatsumi, T. (2002). Uniquetrans-Selectivity of Ti-MWW in Epoxidation ofcis/trans-Alkenes with Hydrogen Peroxide. The Journal of Physical Chemistry B, 106(4), 748-753. doi:10.1021/jp0120965Wu, P., & Tatsumi, T. (2002). Preparation of B-free Ti-MWW through reversible structural conversion. Chemical Communications, (10), 1026-1027. doi:10.1039/b201170kFan, W., Wu, P., Namba, S., & Tatsumi, T. (2004). A Titanosilicate That Is Structurally Analogous to an MWW-Type Lamellar Precursor. Angewandte Chemie International Edition, 43(2), 236-240. doi:10.1002/anie.200352723Kim, S. J., Jung, K.-D., & Joo, O.-S. (2004). Synthesis and Characterization of Gallosilicate Molecular Sieve with the MCM-22 Framework Topology. Journal of Porous Materials, 11(4), 211-218. doi:10.1023/b:jopo.0000046348.23346.ddTeixeira-Neto, A. A., Marchese, L., Landi, G., Lisi, L., & Pastore, H. O. (2008). [V,Al]-MCM-22 catalyst in the oxidative dehydrogenation of propane. Catalysis Today, 133-135, 1-6. doi:10.1016/j.cattod.2007.11.012Wu, Y., Wang, J., Liu, P., Zhang, W., Gu, J., & Wang, X. (2010). Framework-Substituted Lanthanide MCM-22 Zeolite: Synthesis and Characterization. Journal of the American Chemical Society, 132(51), 17989-17991. doi:10.1021/ja107633jIkeda, T., Akiyama, Y., Oumi, Y., Kawai, A., & Mizukami, F. (2004). The Topotactic Conversion of a Novel Layered Silicate into a New Framework Zeolite. Angewandte Chemie International Edition, 43(37), 4892-4896. doi:10.1002/anie.200460168Dorset, D. L., & Kennedy, G. J. (2004). Crystal Structure of MCM-65:  An Alternative Linkage of Ferrierite Layers. The Journal of Physical Chemistry B, 108(39), 15216-15222. doi:10.1021/jp040305qTsunoji, N., Ikeda, T., Ide, Y., Sadakane, M., & Sano, T. (2012). Synthesis and characteristics of novel layered silicates HUS-2 and HUS-3 derived from a SiO2–choline hydroxide–NaOH–H2O system. Journal of Materials Chemistry, 22(27), 13682. doi:10.1039/c2jm31872eIkeda, T., Kayamori, S., Oumi, Y., & Mizukami, F. (2010). Structure Analysis of Si-Atom Pillared Lamellar Silicates Having Micropore Structure by Powder X-ray Diffraction. The Journal of Physical Chemistry C, 114(8), 3466-3476. doi:10.1021/jp912026nXu, H., Yang, B., Jiang, J., Jia, L., He, M., & Wu, P. (2013). Post-synthesis and adsorption properties of interlayer-expanded PLS-4 zeolite. Microporous and Mesoporous Materials, 169, 88-96. doi:10.1016/j.micromeso.2012.10.005Schreyeck, L., Caullet, P., Mougenel, J.-C., Guth, J.-L., & Marler, B. (1995). A layered microporous aluminosilicate precursor of FER-type zeolite. Journal of the Chemical Society, Chemical Communications, (21), 2187. doi:10.1039/c39950002187Schreyeck, L., Caullet, P., Mougenel, J. C., Guth, J. L., & Marler, B. (1996). PREFER: a new layered (alumino) silicate precursor of FER-type zeolite. Microporous Materials, 6(5-6), 259-271. doi:10.1016/0927-6513(96)00032-6Schreyeck, L., Caullet, P., Mougenel, J. C., Guth, J. L., & Marler, B. (1997). A new layered (alumino) silicate and its transformation into a FER-type material by calcination. Progress in Zeolite and Microporous Materials, Preceedings of the 11th International Zeolite Conference, 1949-1956. doi:10.1016/s0167-2991(97)80659-3Corma, A., Diaz, U., Domine, M. E., & Fornés, V. (2000). AlITQ-6 and TiITQ-6: Synthesis, Characterization, and Catalytic Activity. Angewandte Chemie International Edition, 39(8), 1499-1501. doi:10.1002/(sici)1521-3773(20000417)39:83.0.co;2-0Ikeda, T., Kayamori, S., & Mizukami, F. (2009). Synthesis and crystal structure of layered silicate PLS-3 and PLS-4 as a topotactic zeolite precursor. Journal of Materials Chemistry, 19(31), 5518. doi:10.1039/b905415dYang, B., Jiang, J., Xu, H., Liu, Y., Peng, H., & Wu, P. (2013). Selective skeletal isomerization of 1-butene over FER-type zeolites derived from PLS-3 lamellar precursors. Applied Catalysis A: General, 455, 107-113. doi:10.1016/j.apcata.2013.01.024Burton, A., Accardi, R. J., Lobo, R. F., Falcioni, M., & Deem, M. W. (2000). MCM-47:  A Highly Crystalline Silicate Composed of Hydrogen-Bonded Ferrierite Layers. Chemistry of Materials, 12(10), 2936-2942. doi:10.1021/cm000243qMillini, R., Carluccio, L. C., Carati, A., Bellussi, G., Perego, C., Cruciani, G., & Zanardi, S. (2004). ERS-12: A new layered tetramethylammonium silicate composed by ferrierite layers. Microporous and Mesoporous Materials, 74(1-3), 59-71. doi:10.1016/j.micromeso.2004.06.007García, R., Gómez-Hortigüela, L., Díaz, I., Sastre, E., & Pérez-Pariente, J. (2008). Synthesis of Materials Containing Ferrierite Layers Using Quinuclidine and 1-Benzyl-1-methylpyrrolidine as Structure-Directing Agents. An Experimental and Computational Study†. Chemistry of Materials, 20(3), 1099-1107. doi:10.1021/cm702098jAndrews, S. J., Papiz, M. Z., McMeeking, R., Blake, A. J., Lowe, B. M., Franklin, K. R., … Harding, M. M. (1988). Piperazine silicate (EU 19): the structure of a very small crystal determined with synchrotron radiation. Acta Crystallographica Section B Structural Science, 44(1), 73-77. doi:10.1107/s0108768187009820Rollmann, L. D., Schlenker, J. L., Lawton, S. L., Kennedy, C. L., & Kennedy, G. J. (2002). MCM-69, a novel layered analogue of EU-19. Microporous and Mesoporous Materials, 53(1-3), 179-193. doi:10.1016/s1387-1811(02)00338-4Zanardi, S., Alberti, A., Cruciani, G., Corma, A., Fornés, V., & Brunelli, M. (2004). Crystal Structure Determination of Zeolite Nu-6(2) and Its Layered Precursor Nu-6(1). Angewandte Chemie International Edition, 43(37), 4933-4937. doi:10.1002/anie.200460085Araki, T. (1980). Crystal structure of a cesium aluminosilicate, Cs[AlSi5O12]. Zeitschrift für Kristallographie, 152(3-4), 207-213. doi:10.1524/zkri.1980.152.3-4.207Hughes, R. W., & Weller, M. T. (2002). The structure of the CAS type zeolite, Cs4[Al4Si20O48] by high-resolution powder neutron diffraction MAS and NMR. Microporous and Mesoporous Materials, 51(3), 189-196. doi:10.1016/s1387-1811(01)00476-0Marler, B., Camblor, M. A., & Gies, H. (2006). The disordered structure of silica zeolite EU-20b, obtained by topotactic condensation of the piperazinium containing layer silicate EU-19. Microporous and Mesoporous Materials, 90(1-3), 87-101. doi:10.1016/j.micromeso.2005.10.047Blake, A. J., Franklin, K. R., & Lowe, B. M. (1988). Preparation and properties of piperazine silicate (EU-19) and a silica polymorph (EU-20). Journal of the Chemical Society, Dalton Transactions, (10), 2513. doi:10.1039/dt9880002513Lagaly, G. (1986). Interaction of alkylamines with different types of layered compounds. Solid State Ionics, 22(1), 43-51. doi:10.1016/0167-2738(86)90057-3Roth, W. J., Kresge, C. T., Vartuli, J. C., Leonowicz, M. E., Fung, A. S., & McCullen, S. B. (1995). MCM-36: The first pillared molecular sieve with zeoliteproperties. Catalysis by Microporous Materials, Proceedings of ZEOCAT ’95, 301-308. doi:10.1016/s0167-2991(06)81236-xEder, F., He, Y., Nivarthy, G., & Lercher, J. A. (2010). Sorption of alkanes on novel pillared zeolites; comparison between MCM-22 and MCM-36. Recueil des Travaux Chimiques des Pays-Bas, 115(11-12), 531-535. doi:10.1002/recl.19961151114He, Y. ., Nivarthy, G. ., Eder, F., Seshan, K., & Lercher, J. . (1998). Synthesis, characterization and catalytic activity of the pillared molecular sieve MCM-36. Microporous and Mesoporous Materials, 25(1-3), 207-224. doi:10.1016/s1387-1811(98)00210-8Corma, A., Fornés, V., Martı́nez-Triguero, J., & Pergher, S. B. (1999). Delaminated Zeolites: Combining the Benefits of Zeolites and Mesoporous Materials for Catalytic Uses. Journal of Catalysis, 186(1), 57-63. doi:10.1006/jcat.1999.2503J. Roth, W., C. Vartuli, J., & T. Kresge, C. (2000). Characterization of mesoporous molecular sieves: differences between M41s and pillared layered zeolites. Studies in Surface Science and Catalysis, 501-508. doi:10.1016/s0167-2991(00)80251-7Roth, W. J., & Kresge, C. T. (2011). Intercalation chemistry of NU-6(1), the layered precursor to zeolite NSI, leading to the pillared zeolite MCM-39(Si). Microporous and Mesoporous Materials, 144(1-3), 158-161. doi:10.1016/j.micromeso.2011.04.006Barth, J.-O., Kornatowski, J., & Lercher*, J. A. (2002). Synthesis of new MCM-36 derivatives pillared with alumina or magnesia–alumina. Journal of Materials Chemistry, 12(2), 369-373. doi:10.1039/b104824bBARTH, J., JENTYS, A., ILIOPOULOU, E., VASALOS, I., & LERCHER, J. (2004). Novel derivatives of MCM-36 as catalysts for the reduction of nitrogen oxides from FCC regenerator flue gas streams. Journal of Catalysis, 227(1), 117-129. doi:10.1016/j.jcat.2004.06.021Kornatowski, J., Barth, J.-O., & Lercher, J. A. (2005). New modifications of layered MCM-36 molecular sieve pillared with various mixed oxides: facts and perspectives. Studies in Surface Science and Catalysis, 349-356. doi:10.1016/s0167-2991(05)80228-9Barth, J.-O., Jentys, A., Kornatowski, J., & Lercher, J. A. (2004). Control of Acid−Base Properties of New Nanocomposite Derivatives of MCM-36 by Mixed Oxide Pillaring. Chemistry of Materials, 16(4), 724-730. doi:10.1021/cm0349607Schenkel, R., Barth, J. O., Kornatowski, J., Jentys, A., & Lercher, J. A. (2004). Adsorption of methanol on MCM-36 derivatives with strong acid and base sites. Studies in Surface Science and Catalysis, 1598-1605. doi:10.1016/s0167-2991(04)80683-9Maheshwari, S., Jordan, E., Kumar, S., Bates, F. S., Penn, R. L., Shantz, D. F., & Tsapatsis, M. (2008). Layer Structure Preservation during Swelling, Pillaring, and Exfoliation of a Zeolite Precursor. Journal of the American Chemical Society, 130(4), 1507-1516. doi:10.1021/ja077711iLiu, D., Bhan, A., Tsapatsis, M., & Al Hashimi, S. (2010). Catalytic Behavior of Brønsted Acid Sites in MWW and MFI Zeolites with Dual Meso- and Microporosity. ACS Catalysis, 1(1), 7-17. doi:10.1021/cs100042rCorma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006Wu, P., Kan, Q., Wang, D., Xing, H., Jia, M., & Wu, T. (2005). The synthesis of Mo/H-MCM-36 catalyst and its catalytic behavior in methane non-oxidative aromatization. Catalysis Communications, 6(7), 449-454. doi:10.1016/j.catcom.2005.04.002Lallemand, M., Rusu, O. A., Dumitriu, E., Finiels, A., Fajula, F., & Hulea, V. (2008). NiMCM-36 and NiMCM-22 catalysts for the ethylene oligomerization: Effect of zeolite texture and nickel cations/acid sites ratio. Applied Catalysis A: General, 338(1-2), 37-43. doi:10.1016/j.apcata.2007.12.024Lallemand, M., Rusu, O. A., Dumitriu, E., Finiels, A., Fajula, F., & Hulea, V. (2008). Ni-MCM-36 and Ni-MCM-22 catalysts for the ethylene oligomerization. Studies in Surface Science and Catalysis, 1139-1142. doi:10.1016/s0167-2991(08)80087-0Aguilar, J., Pergher, S. B. C., Detoni, C., Corma, A., Melo, F. V., & Sastre, E. (2008). Alkylation of biphenyl with propylene using MCM-22 and ITQ-2 zeolites. Catalysis Today, 133-135, 667-672. doi:10.1016/j.cattod.2007.11.057Zhang, Y., Xing, H., Yang, P., Wu, P., Jia, M., Sun, J., & Wu, T. (2007). Alkylation of benzene with propylene over MCM-36: A comparative study with MCM-22 zeolite synthesized from the same precursors. Reaction Kinetics and Catalysis Letters, 90(1), 45-52. doi:10.1007/s11144-007-4972-0Meloni, D., Dumitriu, E., Monaci, R., & Solinas, V. (2008). Liquid-phase alkylation of phenol with t-Butanol over H-MCM-22, H-ITQ-2 and H-MCM-36 catalysts. Studies in Surface Science and Catalysis, 1111-1114. doi:10.1016/s0167-2991(08)80080-8Dumitriu, E., Fechete, I., Caullet, P., Kessler, H., Hulea, V., Chelaru, C., … Bourdon, X. (2002). Conversion of aromatic hydrocarbons over MCM-22 and MCM-36 catalysts. Impact of Zeolites and other Porous Materials on the new Technologies at the Beginning of the New Millennium, Proceedings of the 2nd International FEZA (Federation of the European Zeolite Associations) Conference, 951-958. doi:10.1016/s0167-2991(02)80123-9Lacarriere, A., Luck, F., Świerczyński, D., Fajula, F., & Hulea, V. (2011). Methanol to hydrocarbons over zeolites with MWW topology: Effect of zeolite texture and acidity. Applied Catalysis A: General, 402(1-2), 208-217. doi:10.1016/j.apcata.2011.06.003Barth, J., Jentys, A., & Lercher, J. A. (2004). Development of novel catalytic additives for the in situ reduction of NOx from fluid catalytic cracking units. Recent Advances in the Science and Technology of Zeolites and Related Materials, Proceedings of the 14th International Zeolite Conference, 2441-2448. doi:10.1016/s0167-2991(04)80509-3Ding, J., Liu, H., Yuan, P., Shi, G., & Bao, X. (2013). Catalytic Properties of a Hierarchical Zeolite Synthesized from a Natural Aluminosilicate Mineral without the Use of a Secondary Mesoscale Template. ChemCatChem, 5(8), 2258-2269. doi:10.1002/cctc.201300049Zhu, J., Cui, Y., Wang, Y., & Wei, F. (2009). Direct synthesis of hierarchical zeolite from a natural layered material. Chemical Communications, (22), 3282. doi:10.1039/b902661dWang, Y. J., Tang, Y., Wang, X. D., Dong, A. G., Shan, W., & Gao, Z. (2001). Fabrication of Hierarchically Structured Zeolites through Layer-by-Layer Assembly of Zeolite Nanocrystals on Diatom Templates. Chemistry Letters, 30(11), 1118-1119. doi:10.1246/cl.2001.1118Rhodes, K. H., Davis, S. A., Caruso, F., Zhang, B., & Mann, S. (2000). Hierarchical Assembly of Zeolite Nanoparticles into Ordered Macroporous Monoliths Using Core−Shell Building Blocks. Chemistry of Materials, 12(10), 2832-2834. doi:10.1021/cm000438yCorma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System

    Spectroscopic, calorimetric, and catalytic evidences of hydrophobicity on Ti-MCM-41 silylated materials for olefin epoxidations

    Get PDF
    tHydrophobic Ti-MCM-41 samples prepared by post-synthesis silylation treatment demonstrate to behighly active and selective catalysts in olefins epoxidation by using organic hydroperoxides as oxidizingagents in liquid phase reaction systems. Epoxide yields show important enhancements with increasedsilylation degrees of the Ti-mesoporous samples. Catalytic studies are combined and correlated withspectroscopic techniques (e.g. XRD, XANES, UV-Visible,29Si MAS-NMR) and calorimetric measurementsto better understand the changes in the surface chemistry of Ti-MCM-41 samples due to the post-synthesis silylation treatment and to ascertain the role of these trimethylsilyl groups incorporated inolefin epoxidation. In such manner, the effect of the organic moieties on solids, and both water and gly-col molecules contents on the catalytic activity and selectivity are analyzed in detail. Results show thatthe hydrophobicity level of the samples is responsible for the decrease in water adsorption and, conse-quently, the negligible formation of the non-desired glycol during the catalytic process. Thus, catalystdeactivation by glycol poisoning of Ti active sites is greatly diminished, this increasing catalyst stabilityand leading to practically quantitative production of the corresponding epoxide. The extended use ofthese hydrophobic Ti-MCM-41 catalysts together with organic hydroperoxides for the highly efficientand selective epoxidation of natural terpenes is also exemplified.The authors gratefully acknowledge financial support of Spanish Government (MAT2012-38567-C02-01, Consolider-Ingenio 2010-Multicat CSD-2009-00050 and Severo Ochoa SEV-2012-0267) and Generalitat Valenciana (Project Prometeo). M.E.D. also thanks funds from Spanish Government (CTQ-2011-27550) and CSIC (PIE 2009801063). J.S.A. and F.R.R. acknowledge financial support from MINECO (Projects MAT2013-45008-p and CONCERT Project-NASEMS (PCIN-2013-057), and from Generalitat Valenciana (PROMETEO2009/002).Silvestre Albero, J.; Domine ., ME.; Jorda Moret, JL.; Navarro Villalba, MT.; Rey Garcia, F.; Rodriguez-Reinoso, F.; Corma Canós, A. (2015). Spectroscopic, calorimetric, and catalytic evidences of hydrophobicity on Ti-MCM-41 silylated materials for olefin epoxidations. Applied Catalysis A: General. 507:14-25. https://doi.org/10.1016/j.apcata.2015.09.029S142550

    Proyecto TIC-TAC, aprendiendo a hacer ciencia

    Get PDF
    Treball Final de Màster Universitari en Professor/a d'Educació Secundària Obligatòria i Batxillerat, Formació Professional i Ensenyaments d'Idiomes. Codi: SAP129. Curs: 2015/2016El presente Trabajo Final de Máster (TFM) está basado en la realización de un proyecto de mejora educativa haciendo uso de la metodología investigación-acción en el ámbito científico y el ambiente en el aula en la materia de Cultura Científica en el curso de 1º de bachillerato. El proyecto se ha desarrollado durante el periodo de prácticas del Máster en Profesorado de Educación Secundaria, Bachillerato, Formación Profesional y Enseñanza de Idiomas impartido en la Univeristat Jaume I (Castellón) en el centro IES Honori Garcia de la Vall d’Uixó (Castellón). Éste consiste en desarrollar una nueva perspectiva científica en el alumnado junto un proceso de socialización en el aula mediante la estimulación de las relaciones activas, debido a que se observó que el alumnado carecía de cultura científica y la comunicación en el aula era forzada y escasa. Se ha comprobado si el Aprendizaje Basado en Proyectos Colaborativos (ABPC) y las Tecnologías de la Información y la Comunicación (TIC), conocido como proyecto TIC-TAC, pueden ser una solución a dichos problemas mediante el diseño de un plan de acción que incluye un tema de actualidad, presente en el currículum e interesante para el alumnado. Con dicho objetivo se ha elaborado un proyecto que implementa prácticas educativas innovadoras que incluyen al alumno en el proceso de Enseñanza-Aprendizaje (E-A). A partir de un caso práctico trabajado desde diferentes perspectivas, en cada uno de los grupos colaborativos, permite realizar trabajos interrelacionados que se complementan entre sí. De esta forma, se espera compartir información y conocimientos con la finalidad de ofrecer una solución consensuada entre todo el grupo clase al caso práctico inicial. Para su realización se ha establecido un núcleo de trabajo en grupo, consta de cuatro tareas diferentes que permiten elaborar el trabajo de forma progresiva junto al feedback ofrecido por el docente con la evaluación formativa. No obstante, el alumnado también participa en el proceso de evaluación, evaluando su propia práctica y la de sus compañeros con una evaluación entre iguales. Por otra parte, también se han incluido actividades individuales que se centran en el aprendizaje autónomo y reflexivo y, finalmente, una evaluación final de los conocimientos. Mediante la observación y evaluación de forma triangulada del impacto de la práctica implementada, en relación con los objetivos de partida, se puede concluir que la metodología de trabajo propuesta ha podido desarrollarse de forma adecuada y que los objetivos se han alcanzado de forma excelente. Se ha conseguido mejorar el ambiente en clase, aumentando la bidireccionalidad entre el docente y el alumnado, y fomentando las interacciones entre estos últimos. Asimismo, se ha logrado construir unas bases sólidas de conocimientos científicos en el alumnado características de la presencia de cultura científica que se han podido observar a partir de calidad de sus argumentaciones y opiniones, interés, participación y actitud activa de trabajo, tanto dentro como fuera del aula

    Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water

    Get PDF
    The isomerization of glucose into fructose is a large-scale reaction for the production of high-fructose corn syrup (HFCS; reaction performed by enzyme catalysts) and recently is being considered as an intermediate step in the possible route of biomass to fuels and chemicals. Here, it is shown that a large-pore zeolite that contains tin (Sn-Beta) is able to isomerize glucose to fructose in aqueous media with high activity and selectivity. Specifically, a 10% (wt/wt) glucose solution containing a catalytic amount of Sn-Beta (1∶50 Sn:glucose molar ratio) gives product yields of approximately 46% (wt/wt) glucose, 31% (wt/wt) fructose, and 9% (wt/wt) mannose after 30 min and 12 min of reaction at 383 K and 413 K, respectively. This reactivity is achieved also when a 45 wt% glucose solution is used. The properties of the large-pore zeolite greatly influence the reaction behavior because the reaction does not proceed with a medium-pore zeolite, and the isomerization activity is considerably lower when the metal centers are incorporated in ordered mesoporous silica (MCM-41). The Sn-Beta catalyst can be used for multiple cycles, and the reaction stops when the solid is removed, clearly indicating that the catalysis is occurring heterogeneously. Most importantly, the Sn-Beta catalyst is able to perform the isomerization reaction in highly acidic, aqueous environments with equivalent activity and product distribution as in media without added acid. This enables Sn-Beta to couple isomerizations with other acid-catalyzed reactions, including hydrolysis/isomerization or isomerization/dehydration reaction sequences [starch to fructose and glucose to 5-hydroxymethylfurfural (HMF) demonstrated here]

    Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes

    Full text link
    [EN] The increasing environmental concern and promotion of “green processes” are forcing the substitution of traditional acid and base homogeneous catalysts by solid ones. Among these heterogeneous catalysts, zeolites and zeotypes can be considered as real “green” catalysts, due to their benign nature from an environmental point of view. The importance of these inorganic molecular sieves within the field of heterogeneous catalysis relies not only on their microporous structure and the related shape selectivity, but also on the flexibility of their chemical composition. Modification of the zeolite framework composition results in materials with acidic, basic or redox properties, whereas multifunctional catalysts can be obtained by introducing metals by ion exchange or impregnation procedures, that can catalyze hydrogenation–dehydrogenation reactions, and the number of commercial applications of zeolite based catalysts is continuously expanding. In this review we discuss determinant issues for the development of zeolite based catalysts, going from zeolite catalyst preparation up to their industrial application. Concerning the synthesis of microporous materials we present some of the new trends moving into larger pore structures or into organic free synthesis media procedures, thanks to the incorporation of novel organic templates or alternative framework elements, and to the use of high-throughput synthesis methods. Post-synthesis zeolite modification and final catalyst conformation for industrial use are briefly discussed. In a last section we give a thorough overview on the application of zeolites in industrial processes. Some of them are well established mature technologies, such as fluid catalytic cracking, hydrocracking or aromatics alkylation. Although the number of zeolite structures commercially used as heterogeneous catalysts in these fields is limited, the development of new catalysts is a continuous challenge due to the need for processing heavier feeds or for increasing the quality of the products. The application of zeolite based catalysts in the production of chemicals and fine chemicals is an emerging field, and will greatly depend on the discovery of new or known structures by alternative, lower cost, synthesis routes, and the fine tuning of their textural properties. Finally, biomass conversion and selective catalytic reduction for conversion of NOx are two active research fields, highlighting the interest in these potential industrial applications.The authors acknowledge financial support from Ministerio de Ciencia e Innovacion (project Consolider-Ingenio 2010 MULTICAT).Martínez Sánchez, MC.; Corma Canós, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews. 255(13-14):1558-1580. doi:10.1016/j.ccr.2011.03.014S1558158025513-1

    Porous catalysts Separate to accumulate: A sequential templating technique yields bifunctional catalysts with controlled separation of cooperative catalytic functionalities

    Full text link
    Corma Canós, A. (2016). Porous catalysts Separate to accumulate: A sequential templating technique yields bifunctional catalysts with controlled separation of cooperative catalytic functionalities. Nature Materials. 15(2):134-136. http://hdl.handle.net/10251/101669S13413615

    Heterogeneous catalysis: understanding the fundamentals for catalyst design

    Full text link
    [EN] Taking the chemoselective hydrogenation of substituted nitroaromatics as a base case, it will be shown that it is possible to design improved and new catalysts by attacking the problem in a multidisciplinary way. By combining molecular modeling with in situ operando spectroscopy, and with micro-kinetic and isotopic studies, it is possible to determine how and where on the catalysts the reactant molecules interact. Then, materials synthesis methods can be applied to prepare catalysts with the desired surface active sites and their selective interaction with the reactants.This work was funded by the Spanish Government (Severo Ochoa program SEV2012-0267). The support of the European Union by (ERC-AdG-2014-671093 – SynCatMatch) is also acknowledged.Corma Canós, A. (2016). Heterogeneous catalysis: understanding the fundamentals for catalyst design. Faraday Discussions of the Chemical Society. 188:9-20. https://doi.org/10.1039/c6fd00066eS92018

    Superparamagnetic particles in ZSM-5-type ferrisilicates

    Get PDF
    As-synthesized, low iron content, ferrisilicates of ZSM-5-type contain well-separated Fe(III) ions in a tetrahedral environment and display paramagnetic behavior. After hydrothermal treatment, the iron ions are partially extracted from the framework, generating nanosize iron oxide or oxyhydroxide ferrimagnetic particles. This process has been studied by transmission electron microscopy (TEM), Mossbauer spectroscopy, magnetic ac susceptibility (chi(ac)), and field dependent magnetization, on samples containing up to 6.7 wt. % Fe. The experiments evidence the growth of nonaggregated particles, with a typical size around 3 nm, presumably located at the surface of the ferrisilicate crystallites, From a thorough granulometric analysis involving TEM and chi(ac) data, it is concluded that, in the range from 1.5 to 4.6 wt. % Fe, the particle size distributions are significantly independent of the iron content
    corecore