8,670 research outputs found

    Minimal Walking Technicolor

    Full text link
    I report on our construction and analysis of the effective low energy Lagrangian for the Minimal Walking Technicolor (MWT) model. The parameters of the effective Lagrangian are constrained by imposing modified Weinberg sum rules and by imposing a value for the S parameter estimated from the underlying Technicolor theory. The constrained effective Lagrangian allows for an inverted vector vs. axial-vector mass spectrum in a large part of the parameter space.Comment: Submitted for the SUSY07 proceedings, 4 pages, LaTeX, 3 eps figure

    Discovering a Light Scalar or Pseudoscalar at The Large Hadron Collider

    Full text link
    The allowed standard model Higgs mass range has been reduced to a region between 114 and 130 GeV or above 500 GeV, at the 99% confidence level, since the Large Hadron Collider (LHC) program started. Furthermore some of the experiments at Tevatron and LHC observe excesses that could arise from a spin-0 particle with a mass of about 125 GeV. It is therefore timely to compare the standard model Higgs predictions against those of a more general new spin-0 state, either scalar or pseudo-scalar. Using an effective Lagrangian approach we investigate the ability to discriminate between a scalar or pseudoscalar, stemming from several extensions of the standard model, at the LHC. We also discuss how to use experimental results to disentangle whether the new state is elementary or composite.Comment: 28 pages, 21 figure

    Asymmetric dark matter and the Sun

    Full text link
    Cold dark matter particles with an intrinsic matter-antimatter asymmetry do not annihilate after gravitational capture by the Sun and can affect its interior structure. The rate of capture is exponentially enhanced when such particles have self-interactions of the right order to explain structure formation on galactic scales. A `dark baryon' of mass 5 GeV is a natural candidate and has the required relic abundance if its asymmetry is similar to that of ordinary baryons. We show that such particles can solve the `solar composition problem'. The predicted small decrease in the low energy neutrino fluxes may be measurable by the Borexino and SNO+ experiments.Comment: 4 pages, 3 figures (RevTex); Capture rate corrected to obey the geometrical bound; Changes in adopted cross-sections and particle physics motivation; Conclusions concerning helioseismology and solar neutrino fluxes unchange

    The Up-Shot of Inelastic Down-Scattering at CDMS-Si

    Full text link
    We study dark matter that inelastically scatters and de-excites in direct detection experiments, as an interpretation of the CDMS-Si events in light of the recent LUX data. The constraints from LUX and XENON10 require the mass-splitting between the DM excited and de-excited states to be ∣δ∣≳50|\delta| \gtrsim 50 keV. At the same time, the CDMS-Si data itself do not allow for a consistent DM interpretation for mass splittings larger than ∣δ∣∼|\delta| \sim 200 keV. We find that a low threshold analysis will be needed to rule out this interpretation of the CDMS-Si events. In a simple model with a kinetically mixed dark photon, we show that the CDMS-Si rate and the thermal relic abundance can both be accommodated.Comment: 10 pages, 3 figures; updated to match PRD versio

    125 GeV Higgs from a not so light Technicolor Scalar

    Full text link
    Assuming that the observed Higgs-like resonance at the Large Hadron Collider is a technicolor isosinglet scalar (the technicolor Higgs), we argue that the standard model top-induced radiative corrections reduce its dynamical mass towards the desired experimental value. We then discuss conditions for the spectrum of technicolor theories to feature a technicolor Higgs with the phenomenologically required dynamical mass. We use scaling laws coming from modifying the technicolor matter representation, number of technicolors, techniflavors as well as the number of doublets gauged under the electroweak theory. Finally we briefly summarize the potential effects of walking dynamics on the technicolor Higgs.Comment: ReVTex, 15 pages, 3 figures. Version to match the published on

    Corrigan-Ramond Extension of QCD at Nonzero Baryon Density

    Full text link
    We investigate the Corrigan-Ramond extension of one massless flavor Quantum Chromo Dynamics at nonzero quark chemical potential. Since the extension requires the fermions to transform in the two index antisymmetric representation of the gauge group, one finds that the number of possible channels is richer than in the 't Hooft limit. We first discuss the diquark channels and show that for a number of colors larger than three a new diquark channel appears. We then study the infinite number of color limit and show that the Fermi surface is unstable to the formation of the Deryagin-Grigoriev-Rubakov chiral waves. We discover, differently from the 't Hooft limit, the possibility of a colored chiral wave breaking the color symmetry as well as translation invariance.Comment: RevTeX, 14 pages, 2 figure
    • …
    corecore