1,032 research outputs found

    Atom lithography using MRI-type feature placement

    Get PDF
    We demonstrate the use of frequency-encoded light masks in neutral atom lithography. We demonstrate that multiple features can be patterned across a monotonic potential gradient. Features as narrow as 0.9 microns are fabricated on silicon substrates with a metastable argon beam. Internal state manipulation with such a mask enables continuously adjustable feature positions and feature densities not limited by the optical wavelength, unlike previous light masks.Comment: 4 pages, 4 figure

    Lowered sensitivity of bitter taste receptors to β-glucosides in bamboo lemurs: an instance of parallel and adaptive functional decline in TAS2R16?

    Get PDF
    竹食サル類の苦味感覚の進化を解明 --竹が先か苦味が先か--. 京都大学プレスリリース. 2021-04-16.Bitter taste facilitates the detection of potentially harmful substances and is perceived via bitter taste receptors (TAS2Rs) expressed on the tongue and oral cavity in vertebrates. In primates, TAS2R16 specifically recognizes β-glucosides, which are important in cyanogenic plants' use of cyanide as a feeding deterrent. In this study, we performed cell-based functional assays for investigating the sensitivity of TAS2R16 to β-glucosides in three species of bamboo lemurs (Prolemur simus, Hapalemur aureus and H. griseus), which primarily consume high-cyanide bamboo. TAS2R16 receptors from bamboo lemurs had lower sensitivity to β-glucosides, including cyanogenic glucosides, than that of the closely related ring-tailed lemur (Lemur catta). Ancestral reconstructions of TAS2R16 for the bamboo-lemur last common ancestor (LCA) and that of the Hapalemur LCA showed an intermediate sensitivity to β-glucosides between that of the ring-tailed lemurs and bamboo lemurs. Mutagenetic analyses revealed that P. simus and H. griseus had separate species-specific substitutions that led to reduced sensitivity. These results indicate that low sensitivity to β-glucosides at the cellular level-a potentially adaptive trait for feeding on cyanogenic bamboo-evolved independently after the Prolemur-Hapalemur split in each species

    NDE of Polymer Composites Using Magnetic Resonance Techniques

    Get PDF
    Polymer based materials have become increasingly important in structural applications primarily due to their high strength to weight ratio. As the use of polymer-based composites has increased, so has the need for reliable non-destructive evaluation techniques. In this paper, a new NDE method for these materials is proposed. The technique relies on the observation of an electron paramagnetic resonance (epr) absorption at the site of damage in a polymer. Using applied magnetic field gradients the physical location of damage can be discerned and an image of the damage site can be obtained. This should allow the detection of cracks and delaminations with high resolution, good sensitivity and good contrast

    Microtesla MRI of the human brain combined with MEG

    Full text link
    One of the challenges in functional brain imaging is integration of complementary imaging modalities, such as magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). MEG, which uses highly sensitive superconducting quantum interference devices (SQUIDs) to directly measure magnetic fields of neuronal currents, cannot be combined with conventional high-field MRI in a single instrument. Indirect matching of MEG and MRI data leads to significant co-registration errors. A recently proposed imaging method - SQUID-based microtesla MRI - can be naturally combined with MEG in the same system to directly provide structural maps for MEG-localized sources. It enables easy and accurate integration of MEG and MRI/fMRI, because microtesla MR images can be precisely matched to structural images provided by high-field MRI and other techniques. Here we report the first images of the human brain by microtesla MRI, together with auditory MEG (functional) data, recorded using the same seven-channel SQUID system during the same imaging session. The images were acquired at 46 microtesla measurement field with pre-polarization at 30 mT. We also estimated transverse relaxation times for different tissues at microtesla fields. Our results demonstrate feasibility and potential of human brain imaging by microtesla MRI. They also show that two new types of imaging equipment - low-cost systems for anatomical MRI of the human brain at microtesla fields, and more advanced instruments for combined functional (MEG) and structural (microtesla MRI) brain imaging - are practical.Comment: 8 pages, 5 figures - accepted by JM

    Spinal Nerve Root Swelling Mimicking Intervertebral Disc Herniation in Magnetic Resonance Imaging -A Case Report-

    Get PDF
    A herniated intervertebral disc is the most common type of soft tissue mass lesion within the lumbar spinal canal. Magnetic resonance imaging (MRI) is a useful tool for the assessment of patients with lower back pain and radiating pain, especially intervertebral disc herniation. MRI findings of intervertebral disc herniation are typical. However, from time to time, despite an apparently classic history and typical MRI findings suggestive of disc herniation, surgical exploration fails to reveal any lesion of an intervertebral disc. Our patient underwent lumbar disc surgery with the preoperative diagnosis of lumbar disc herniation; however, nothing could be found during the surgical procedure, except a swollen nerve root

    Увеличение темпов прироста запасов углеводородов с помощью инновационных технологий на примере Омской области

    Get PDF
    Проведен анализ перспектив нефтегазоносности Омской области на основе данных инновационной технологии квантово-оптической фильтрации космоснимков. Приведены физические принципы технологии квантово-оптической фильтрации. На примере Омской области показана эффективность применения технологии квантово-оптической фильтрации при решении задачи повышения темпов прироста запасов углеводородного сырья

    Proton and sodium MRI assessment of emerging tumor chemotherapeutic resistance

    Full text link
    The ultimate goal of any cancer therapy is to target the elimination of neoplastic cells. Although newer therapeutic strategies are in constant development, therapeutic assessment has been hampered by the inability to assess, rapidly and quantitatively, efficacy in vivo . Diffusion imaging and, more recently, sodium MRI have demonstrated their distinct abilities to detect therapy-induced alterations in tumor cellularity, which has been demonstrated to be indicative of therapeutic efficacy. More importantly, both imaging modalities detect tumor response much earlier than traditional methodologies that rely on macroscopic volumetric changes. In this study, the correlation between tumor sodium and diffusion was further tested to demonstrate the sensitivity of sodium imaging to gauge tumor response to therapy by using a 9L rat gliosarcoma treated with varying doses of BCNU [1,3-bis(2-chloroethyl)-1-nitrosourea]. This orthotopic model has been demonstrated to display variability in response to BCNU therapy where initial insult has been shown to lead to drug-resistance. In brief, a single 26.6 mg/kg BCNU dose yielded dramatic responses in both diffusion and sodium MRI. However, a second equivalent BCNU dose yielded a much smaller change in diffusion and sodium, suggesting a drop in tumor sensitivity to BCNU. The MRI responses of animals treated with 13.3 mg/kg BCNU were much lower and similar responses were observed after the initial and secondary applications of BCNU. Furthermore, these results were further validated using volumetric measurements of the tumor and also ex vivo determination of tumor sensitivity to BCNU. Overall, these experiments demonstrate the sensitivity and applicability of sodium and diffusion MRI as tools for dynamic assessment of tumor response to therapy. Copyright © 2006 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/55899/1/1074_ftp.pd

    The State of the Art of Medical Imaging Technology: from Creation to Archive and Back

    Get PDF
    Medical imaging has learnt itself well into modern medicine and revolutionized medical industry in the last 30 years. Stemming from the discovery of X-ray by Nobel laureate Wilhelm Roentgen, radiology was born, leading to the creation of large quantities of digital images as opposed to film-based medium. While this rich supply of images provides immeasurable information that would otherwise not be possible to obtain, medical images pose great challenges in archiving them safe from corrupted, lost and misuse, retrievable from databases of huge sizes with varying forms of metadata, and reusable when new tools for data mining and new media for data storing become available. This paper provides a summative account on the creation of medical imaging tomography, the development of image archiving systems and the innovation from the existing acquired image data pools. The focus of this paper is on content-based image retrieval (CBIR), in particular, for 3D images, which is exemplified by our developed online e-learning system, MIRAGE, home to a repository of medical images with variety of domains and different dimensions. In terms of novelties, the facilities of CBIR for 3D images coupled with image annotation in a fully automatic fashion have been developed and implemented in the system, resonating with future versatile, flexible and sustainable medical image databases that can reap new innovations

    Language Mapping With Magnetoencephalography: An Update on the Current State of Clinical Research and Practice With Considerations for Clinical Practice Guidelines

    Get PDF
    Numerous studies have shown that language processing is not limited to a few brain areas. Visual or auditory stimuli activate corresponding cortical areas, then memory identifies the word or image, Wernicke\u27s and Broca\u27s areas support the processing for either reading/listening or speaking and many areas of the brain are recruited. Determining how a normal person processes language helps clinicians and scientist to understand how brain pathologies such as tumor or stroke can affect changes in language processing. Patients with epilepsy may develop atypical language organization. Over time, the chronic nature of epileptic activity, or changes from a tumor or stroke, can result in a shift of language processing area from the left to the right hemisphere, or re-routing of language pathways from traditional to non-traditional areas within the dominant left hemisphere. It is important to determine where these language areas are prior to brain surgery. MEG evoked responses reflecting cerebral activation of receptive and expressive language processing can be localized using several different techniques: Single equivalent current dipole, current distribution techniques or beamformer techniques. Over the past 20 years there have been at least 25 validated MEG studies that indicate MEG can be used to determine the dominant hemisphere for language processing. The use of MEG neuroimaging techniques is needed to reliably predict altered language networks in patients and to provide identification of language eloquent cortices for localization and lateralization necessary for clinical care

    Multi-fractal geometry of finite networks of spins: Nonequilibrium dynamics beyond thermalization and many-body-localization

    Get PDF
    Quantum spin networks overcome the challenges of traditional charge-based electronics by encoding information into spin degrees of freedom. Although beneficial for transmitting information with minimal losses when compared to their charge-based counterparts, the mathematical formalization of the information propagation in a spin(tronic) network is challenging due to its complicated scaling properties. In this paper, we propose a fractal geometric approach for unraveling the information-theoretic phenomena of spin chains and rings by abstracting them as weighted graphs, where the vertices correspond to single spin excitation states and the edges represent the information theoretic distance between pair of nodes. The weighted graph exhibits a complex self-similar structure. To quantify this complex behavior, we develop a new box-counting-inspired algorithm which assesses the mono-fractal versus multi-fractal properties of quantum spin networks. Mono- and multi-fractal properties are in the same spirit as, but different from, Eigenstate Thermalization Hypothesis (ETH) and Many-Body Localization (MBL), respectively. To demonstrate criticality in finite size systems, we define a thermodynamics inspired framework for describing information propagation and show evidence that some spin chains and rings exhibit an informational phase transition phenomenon, akin to the MBL transition
    corecore