5,236 research outputs found

    Needs Assessment: Veterans in the Western United States

    Get PDF
    In this report, the authors focus on the diverse challenges facing veterans in 12 states and communities that account for nearly one-third of all veterans nationwide. They report on the specific challenges of mental health care, employment, housing, family support, reintegration and legal matters with which veterans in the region are contending and propose steps to address them. Among their recommendations, Mr. Carter and Ms. Kidder urge private philanthropists, as well as public funders, to encourage communities to build collaboration and coordination mechanisms that allocate increasingly scarce resources efficiently an

    Needs Assessment: Veterans in Southwest Pennsylvania

    Get PDF
    This assessment by the Center for a New American Security (CNAS) finds that Southwest Pennsylvania veterans are struggling with issues pertaining to education, access to benefits and economic security immediately after leaving military service. It also finds that the region's 235,000 veterans differ dramatically in how they feel about veterans benefits and their own well-being depending on whether they served before 9/11 or after. This mixed methods study provides a comprehensive portrait of veterans in Southwest Pennsylvania, one of the nation's largest and densest veterans communities. CNAS researchers used cutting-edge analytical tools from the Veterans Data Project to better understand the population, leveraging public data sets made available by DoD, VA, and the Census Bureau to understand macro-level trends in the area. In addition to this data, the CNAS team conducted interviews and working group discussions with individuals representing more than 50 public, private and nonprofit sector organizations serving veterans in the region, and conducted surveys of area veterans as well

    On the detectability of post-Newtonian effects in gravitational-wave emission of a coalescing binary

    Get PDF
    The effect of the recently obtained 2nd post-Newtonian corrections on the accuracy of estimation of parameters of the gravitational-wave signal from a coalescing binary is investigated. It is shown that addition of this correction degrades considerably the accuracy of determination of individual masses of the members of the binary. However the chirp mass and the time parameter in the sinal is still determined to a very good accuracy. The performance of the Newtonian filter is investigated and it is compared with performance of post-Newtonian search templates introduced recently. It is shown that both search templates can extract accurately useful information about the binary.Comment: 5 pages (16kb), LATEX, to be published in the proccedings of the 17th Texas Symposiu

    Spectral Methods for Numerical Relativity. The Initial Data Problem

    Get PDF
    Numerical relativity has traditionally been pursued via finite differencing. Here we explore pseudospectral collocation (PSC) as an alternative to finite differencing, focusing particularly on the solution of the Hamiltonian constraint (an elliptic partial differential equation) for a black hole spacetime with angular momentum and for a black hole spacetime superposed with gravitational radiation. In PSC, an approximate solution, generally expressed as a sum over a set of orthogonal basis functions (e.g., Chebyshev polynomials), is substituted into the exact system of equations and the residual minimized. For systems with analytic solutions the approximate solutions converge upon the exact solution exponentially as the number of basis functions is increased. Consequently, PSC has a high computational efficiency: for solutions of even modest accuracy we find that PSC is substantially more efficient, as measured by either execution time or memory required, than finite differencing; furthermore, these savings increase rapidly with increasing accuracy. The solution provided by PSC is an analytic function given everywhere; consequently, no interpolation operators need to be defined to determine the function values at intermediate points and no special arrangements need to be made to evaluate the solution or its derivatives on the boundaries. Since the practice of numerical relativity by finite differencing has been, and continues to be, hampered by both high computational resource demands and the difficulty of formulating acceptable finite difference alternatives to the analytic boundary conditions, PSC should be further pursued as an alternative way of formulating the computational problem of finding numerical solutions to the field equations of general relativity.Comment: 15 pages, 5 figures, revtex, submitted to PR

    Tropical cyclone intensities from satellite microwave data

    Get PDF
    Radial profiles of mean 1000 mb to 250 mb temperature from the Nimbus 6 scanning microwave spectrometer (SCAMS) were constructed around eight intensifying tropical storms in the western Pacific. Seven storms showed distinct inward temperature gradients required for intensification; the eighth displayed no inward gradient and was decaying 24 hours later. The possibility that satellite data might be used to forecast tropical cyclone turning motion was investigated using estimates obtained from Nimbus 6 SCAMS data tapes of the mean 1000 mb to 250 mb temperature field around eleven tropical storms in 1975. Analysis of these data show that for turning storms, in all but one case, the turn was signaled 24 hours in advance by a significant temperature gradient perpendicular to the storm's path, at a distance of 9 deg to 13 deg in front of the storm. A thresholding technique was applied to the North Central U.S. during the summer to estimate precipitation frequency. excep

    The Federal Administrative Court Proposal: An Examination of General Principals

    Get PDF
    Simulations of relativistic hydrodynamics often need both high accuracy and robust shock-handling properties. The discontinuous Galerkin method combines these features—a high order of convergence in regions where the solution is smooth and shock-capturing properties for regions where it is not—with geometric flexibility and is therefore well suited to solve the partial differential equations describing astrophysical scenarios. We present here evolutions of a general-relativistic neutron star with the discontinuous Galerkin method. In these simulations, we simultaneously evolve the spacetime geometry and the matter on the same computational grid, which we conform to the spherical geometry of the problem. To verify the correctness of our implementation, we perform standard convergence and shock tests. We then show results for evolving, in three dimensions, a Kerr black hole; a neutron star in the Cowling approximation (holding the spacetime metric fixed); and, finally, a neutron star where the spacetime and matter are both dynamical. The evolutions show long-term stability, good accuracy, and an improved rate of convergence versus a comparable-resolution finite-volume method

    Estimating the final spin of a binary black hole coalescence

    Full text link
    We present a straightforward approach for estimating the final black hole spin of a binary black hole coalescence with arbitrary initial masses and spins. Making some simple assumptions, we estimate the final angular momentum to be the sum of the individual spins plus the orbital angular momentum of a test particle orbiting at the last stable orbit around a Kerr black hole with a spin parameter of the final black hole. The formula we obtain is able to reproduce with reasonable accuracy the results from available numerical simulations, but, more importantly, it can be used to investigate what configurations might give rise to interesting dynamics. In particular, we discuss scenarios which might give rise to a ``flip'' in the direction of the total angular momentum of the system. By studying the dependence of the final spin upon the mass ratio and initial spins we find that our simple approach suggests that it is not possible to spin-up a black hole to extremal values through merger scenarios irrespective of the mass ratio of the objects involved.Comment: 9 pages, 8 figure

    Evolving relativistic fluid spacetimes using pseudospectral methods and finite differencing

    Get PDF
    We present a new code for solving the coupled Einstein-hydrodynamics equations to evolve relativistic, self-gravitating fluids. The Einstein field equations are solved on one grid using pseudospectral methods, while the fluids are evolved on another grid by finite differencing. We discuss implementation details, such as the communication between the grids and the treatment of stellar surfaces, and present code tests.Comment: To appear in the Proceedings of the Eleventh Marcel Grossmann Meetin
    • …
    corecore