76 research outputs found

    The semi-classical expansion and resurgence in gauge theories: new perturbative, instanton, bion, and renormalon effects

    Get PDF
    We study the dynamics of four dimensional gauge theories with adjoint fermions for all gauge groups, both in perturbation theory and non-perturbatively, by using circle compactification with periodic boundary conditions for the fermions. There are new gauge phenomena. We show that, to all orders in perturbation theory, many gauge groups are Higgsed by the gauge holonomy around the circle to a product of both abelian and nonabelian gauge group factors. Non-perturbatively there are monopole-instantons with fermion zero modes and two types of monopole-anti-monopole molecules, called bions. One type are "magnetic bions" which carry net magnetic charge and induce a mass gap for gauge fluctuations. Another type are "neutral bions" which are magnetically neutral, and their understanding requires a generalization of multi-instanton techniques in quantum mechanics - which we refer to as the Bogomolny-Zinn-Justin (BZJ) prescription - to compactified field theory. The BZJ prescription applied to bion-anti-bion topological molecules predicts a singularity on the positive real axis of the Borel plane (i.e., a divergence from summing large orders in peturbation theory) which is of order N times closer to the origin than the leading 4-d BPST instanton-anti-instanton singularity, where N is the rank of the gauge group. The position of the bion--anti-bion singularity is thus qualitatively similar to that of the 4-d IR renormalon singularity, and we conjecture that they are continuously related as the compactification radius is changed. By making use of transseries and Ecalle's resurgence theory we argue that a non-perturbative continuum definition of a class of field theories which admit semi-classical expansions may be possible.Comment: 112 pages, 7 figures; v2: typos corrected, discussion of supersymmetric models added at the end of section 8.1, reference adde

    A Method for Structure–Activity Analysis of Quorum-Sensing Signaling Peptides from Naturally Transformable Streptococci

    Get PDF
    Many species of streptococci secrete and use a competence-stimulating peptide (CSP) to initiate quorum sensing for induction of genetic competence, bacteriocin production, and other activities. These signaling molecules are small, unmodified peptides that induce powerful strain-specific activity at nano-molar concentrations. This feature has provided an excellent opportunity to explore their structure–function relationships. However, CSP variants have also been identified in many species, and each specifically activates its cognate receptor. How such minor changes dramatically affect the specificity of these peptides remains unclear. Structure–activity analysis of these peptides may provide clues for understanding the specificity of signaling peptide–receptor interactions. Here, we use the Streptococcus mutans CSP as an example to describe methods of analyzing its structure–activity relationship. The methods described here may provide a platform for studying quorum-sensing signaling peptides of other naturally transformable streptococci

    Neuroprotection of Tanshinone IIA against Cerebral Ischemia/Reperfusion Injury through Inhibition of Macrophage Migration Inhibitory Factor in Rats

    Get PDF
    . Recent studies have demonstrated that TSA has protective effects against focal cerebral I/R injury. However, little is known about the underlying mechanisms. Here we put forward the hypothesis that TSA acts through inhibition of MIF expression during focal cerebral I/R injury in rats.Rats were subjected to middle cerebral artery occlusion (MCAO) for 2 hours. This was followed by reperfusion. We measured neurological deficits, brain water content, and infarct volume, and found that neurological dysfunction, brain edema, and brain infarction were significantly attenuated by TSA 6 hours after reperfusion. We also measured myeloperoxidase (MPO) activity at 6 and 24 hours, and found that neutrophil infiltration was significantly higher in the vehicle+I/R group than in the TSA+I/R group. ELISA demonstrated that TSA could inhibit MIF expression and the release of TNF-α and IL-6 induced by I/R injury. Western blot analysis and immunofluorescence staining showed that MIF expression was significantly lower in the TSA+I/R group than in the vehicle+I/R group. MIF was found almost all located in neurons and hardly any located in astrocytes in the cerebral cortex. Western blot analysis and EMSA demonstrated that NF-κB expression and activity were significantly increased in the vehicle+I/R group. However, these changes were attenuated by TSA.Our results suggest that TSA helps alleviate the proinflammatory responses associated with I/R-induced injury and that this neuroprotective effect may occur through down-regulation of MIF expression in neurons

    Wild Type and Mutant 2009 Pandemic Influenza A (H1N1) Viruses Cause More Severe Disease and Higher Mortality in Pregnant BALB/c Mice

    Get PDF
    BACKGROUND: Pregnant women infected by the pandemic influenza A (H1N1) 2009 virus had more severe disease and higher mortality but its pathogenesis is still unclear. PRINCIPAL FINDINGS: We showed that higher mortality, more severe pneumonitis, higher pulmonary viral load, lower peripheral blood T lymphocytes and antibody responses, higher levels of proinflammatory cytokines and chemokines, and worse fetal development occurred in pregnant mice than non-pregnant controls infected by either wild type (clinical isolate) or mouse-adapted mutant virus with D222G substitution in hemagglutinin. These disease-associated changes and the lower respiratory tract involvement were worse in pregnant mice challenged by mutant virus. Though human placental origin JEG-3 cell line could be infected and proinflammatory cytokines or chemokines were elevated in amniotic fluid of some mice, no placental or fetal involvement by virus were detected by culture, real-time reverse transcription polymerase chain reaction or histopathological changes. Dual immunofluorescent staining of viral nucleoprotein and type II alveolar cell marker SP-C protein suggested that the majority of infected alveolar epithelial cells were type II pneumocytes. CONCLUSION: The adverse effect of this pandemic virus on maternal and fetal outcome is largely related to the severe pulmonary disease and the indirect effect of inflammatory cytokine spillover into the systemic circulation

    Association of the Chromosome Replication Initiator DnaA with the Escherichia coli Inner Membrane In Vivo: Quantity and Mode of Binding

    Get PDF
    DnaA initiates chromosome replication in most known bacteria and its activity is controlled so that this event occurs only once every cell division cycle. ATP in the active ATP-DnaA is hydrolyzed after initiation and the resulting ADP is replaced with ATP on the verge of the next initiation. Two putative recycling mechanisms depend on the binding of DnaA either to the membrane or to specific chromosomal sites, promoting nucleotide dissociation. While there is no doubt that DnaA interacts with artificial membranes in vitro, it is still controversial as to whether it binds the cytoplasmic membrane in vivo. In this work we looked for DnaA-membrane interaction in E. coli cells by employing cell fractionation with both native and fluorescent DnaA hybrids. We show that about 10% of cellular DnaA is reproducibly membrane-associated. This small fraction might be physiologically significant and represent the free DnaA available for initiation, rather than the vast majority bound to the datA reservoir. Using the combination of mCherry with a variety of DnaA fragments, we demonstrate that the membrane binding function is delocalized on the surface of the protein’s domain III, rather than confined to a particular sequence. We propose a new binding-bending mechanism to explain the membrane-induced nucleotide release from DnaA. This mechanism would be fundamental to the initiation of replication

    Prevalence and trend of hepatitis C virus infection among blood donors in Chinese mainland: a systematic review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Blood transfusion is one of the most common transmission pathways of hepatitis C virus (HCV). This paper aims to provide a comprehensive and reliable tabulation of available data on the epidemiological characteristics and risk factors for HCV infection among blood donors in Chinese mainland, so as to help make prevention strategies and guide further research.</p> <p>Methods</p> <p>A systematic review was constructed based on the computerized literature database. Infection rates and 95% confidence intervals (95% CI) were calculated using the approximate normal distribution model. Odds ratios and 95% CI were calculated by fixed or random effects models. Data manipulation and statistical analyses were performed using STATA 10.0 and ArcGIS 9.3 was used for map construction.</p> <p>Results</p> <p>Two hundred and sixty-five studies met our inclusion criteria. The pooled prevalence of HCV infection among blood donors in Chinese mainland was 8.68% (95% CI: 8.01%-9.39%), and the epidemic was severer in North and Central China, especially in Henan and Hebei. While a significant lower rate was found in Yunnan. Notably, before 1998 the pooled prevalence of HCV infection was 12.87% (95%CI: 11.25%-14.56%) among blood donors, but decreased to 1.71% (95%CI: 1.43%-1.99%) after 1998. No significant difference was found in HCV infection rates between male and female blood donors, or among different blood type donors. The prevalence of HCV infection was found to increase with age. During 1994-1995, the prevalence rate reached the highest with a percentage of 15.78% (95%CI: 12.21%-19.75%), and showed a decreasing trend in the following years. A significant difference was found among groups with different blood donation types, Plasma donors had a relatively higher prevalence than whole blood donors of HCV infection (33.95% <it>vs </it>7.9%).</p> <p>Conclusions</p> <p>The prevalence of HCV infection has rapidly decreased since 1998 and kept a low level in recent years, but some provinces showed relatively higher prevalence than the general population. It is urgent to make efficient measures to prevent HCV secondary transmission and control chronic progress, and the key to reduce the HCV incidence among blood donors is to encourage true voluntary blood donors, strictly implement blood donation law, and avoid cross-infection.</p

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore