412 research outputs found
Aerodynamic investigations of ventilated brake discs.
The heat dissipation and performance of a ventilated brake disc strongly depends
on the aerodynamic characteristics of the flow through the rotor passages. The
aim of this investigation was to provide an improved understanding of ventilated
brake rotor flow phenomena, with a view to improving heat dissipation, as well
as providing a measurement data set for validation of computational fluid
dynamics methods. The flow fields at the exit of four different brake rotor
geometries, rotated in free air, were measured using a five-hole pressure probe
and a hot-wire anemometry system. The principal measurements were taken using
two-component hot-wire techniques and were used to determine mean and unsteady
flow characteristics at the exit of the brake rotors. Using phase-locked data
processing, it was possible to reveal the spatial and temporal flow variation
within individual rotor passages. The effects of disc geometry and rotational
speed on the mean flow, passage turbulence intensity, and mass flow were
determined. The rotor exit jet and wake flow were clearly observed as
characterized by the passage geometry as well as definite regions of high and
low turbulence. The aerodynamic flow characteristics were found to be reasonably
independent of rotational speed but highly dependent upon rotor geometry
Tutorials at PPSN 2016
PPSN 2016 hosts a total number of 16 tutorials covering a broad range of current research in evolutionary computation. The tutorials range from introductory to advanced and specialized but can all be attended without prior requirements. All PPSN attendees are cordially invited to take this opportunity to learn about ongoing research activities in our field
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
The evolution of photosynthesis in chromist algae through serial endosymbioses
Chromist algae include diverse photosynthetic organisms of great ecological and social importance. Despite vigorous research efforts, a clear understanding of how various chromists acquired photosynthetic organelles has been complicated by conflicting phylogenetic results, along with an undetermined number and pattern of endosymbioses, and the horizontal movement of genes that accompany them. We apply novel statistical approaches to assess impacts of endosymbiotic gene transfer on three principal chromist groups at the heart of long-standing controversies. Our results provide robust support for acquisitions of photosynthesis through serial endosymbioses, beginning with the adoption of a red alga by cryptophytes, then a cryptophyte by the ancestor of ochrophytes, and finally an ochrophyte by the ancestor of haptophytes. Resolution of how chromist algae are related through endosymbioses provides a framework for unravelling the further reticulate history of red algal-derived plastids, and for clarifying evolutionary processes that gave rise to eukaryotic photosynthetic diversity
Insect threats and conservation through the lens of global experts
While several recent studies have focused on global insect population trends, all are limited in either space or taxonomic scope. As global monitoring programs for insects are currently not implemented, inherent biases exist within most data. Expert opinion, which is often widely available, proves to be a valuable tool where hard data are limited. Our aim is to use global expert opinion to provide insights on the root causes of potential insect declines worldwide, as well as on effective conservation strategies that could mitigate insect biodiversity loss. We obtained 753 responses from 413 respondents with a wide variety of spatial and taxonomic expertise. The most relevant threats identified through the survey were agriculture and climate change, followed by pollution, while land management and land protection were recognized as the most significant conservation measures. Nevertheless, there were differences across regions and insect groups, reflecting the variability within the most diverse class of eukaryotic organisms on our planet. Lack of answers for certain biogeographic regions or taxa also reflects the need for research in less investigated settings. Our results provide a novel step toward understanding global threats and conservation measures for insects.Peer reviewe
Tau-Mediated Nuclear Depletion and Cytoplasmic Accumulation of SFPQ in Alzheimer's and Pick's Disease
Tau dysfunction characterizes neurodegenerative diseases such as Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD). Here, we performed an unbiased SAGE (serial analysis of gene expression) of differentially expressed mRNAs in the amygdala of transgenic pR5 mice that express human tau carrying the P301L mutation previously identified in familial cases of FTLD. SAGE identified 29 deregulated transcripts including Sfpq that encodes a nuclear factor implicated in the splicing and regulation of gene expression. To assess the relevance for human disease we analyzed brains from AD, Pick's disease (PiD, a form of FTLD), and control cases. Strikingly, in AD and PiD, both dementias with a tau pathology, affected brain areas showed a virtually complete nuclear depletion of SFPQ in both neurons and astrocytes, along with cytoplasmic accumulation. Accordingly, neurons harboring either AD tangles or Pick bodies were also depleted of SFPQ. Immunoblot analysis of human entorhinal cortex samples revealed reduced SFPQ levels with advanced Braak stages suggesting that the SFPQ pathology may progress together with the tau pathology in AD. To determine a causal role for tau, we stably expressed both wild-type and P301L human tau in human SH-SY5Y neuroblastoma cells, an established cell culture model of tau pathology. The cells were differentiated by two independent methods, mitomycin C-mediated cell cycle arrest or neuronal differentiation with retinoic acid. Confocal microscopy revealed that SFPQ was confined to nuclei in non-transfected wild-type cells, whereas in wild-type and P301L tau over-expressing cells, irrespective of the differentiation method, it formed aggregates in the cytoplasm, suggesting that pathogenic tau drives SFPQ pathology in post-mitotic cells. Our findings add SFPQ to a growing list of transcription factors with an altered nucleo-cytoplasmic distribution under neurodegenerative conditions
A framework for remission in SLE: consensus findings from a large international task force on definitions of remission in SLE (DORIS)
Objectives Treat-to-target recommendations have identified 'remission' as a target in systemic lupus erythematosus (SLE), but recognise that there is no universally accepted definition for this. Therefore, we initiated a process to achieve consensus on potential definitions for remission in SLE. Methods An international task force of 60 specialists and patient representatives participated in preparatory exercises, a face-to-face meeting and follow-up electronic voting. The level for agreement was set at 90%. Results The task force agreed on eight key statements regarding remission in SLE and three principles to guide the further development of remission definitions: 1. Definitions of remission will be worded as follows: remission in SLE is a durable state characterised by . (reference to symptoms, signs, routine labs). 2. For defining remission, a validated index must be used, for example, clinical systemic lupus erythematosus disease activity index (SLEDAI)=0, British Isles lupus assessment group (BILAG) 2004 D/E only, clinical European consensus lupus outcome measure (ECLAM)=0; with routine laboratory assessments included, and supplemented with physician's global assessment. 3. Distinction is made between remission off and on therapy: remission off therapy requires the patient to be on no other treatment for SLE than maintenance antimalarials; and remission on therapy allows patients to be on stable maintenance antimalarials, low-dose corticosteroids (prednisone â€5â
mg/day), maintenance immunosuppressives and/or maintenance biologics. The task force also agreed that the most appropriate outcomes (dependent variables) for testing the prognostic value (construct validity) of potential remission definitions are: death, damage, flares and measures of health-related quality of life. Conclusions The work of this international task force provides a framework for testing different definitions of remission against long-term outcomes
Cryptic species in a well-known habitat: applying taxonomics to the amphipod genus Epimeria (Crustacea, Peracarida)
Taxonomy plays a central role in biological sciences. It provides a communication system for scientists as it aims to enable correct identification of the studied organisms. As a consequence, species descriptions should seek to include as much available information as possible at species level to follow an integrative concept of âtaxonomicsâ. Here, we describe the cryptic species Epimeria frankei sp. nov. from the North Sea, and also redescribe its sister species, Epimeria cornigera. The morphological information obtained is substantiated by DNA barcodes and complete nuclear 18S rRNA gene sequences. In addition, we provide, for the first time, full mitochondrial genome data as part of a metazoan species description for a holotype, as well as the neotype. This study represents the first successful implementation of the recently proposed concept of taxonomics, using data from highthroughput technologies for integrative taxonomic studies, allowing the highest level of confidence for both biodiversity and ecological research
The contribution of insects to global forest deadwood decomposition
The amount of carbon stored in deadwood is equivalent to about 8âper cent of the global forest carbon stocks. The decomposition of deadwood is largely governed by climate with decomposer groupsâsuch as microorganisms and insectsâcontributing to variations in the decomposition rates. At the global scale, the contribution of insects to the decomposition of deadwood and carbon release remains poorly understood. Here we present a field experiment of wood decomposition across 55 forest sites and 6 continents. We find that the deadwood decomposition rates increase with temperature, and the strongest temperature effect is found at high precipitation levels. Precipitation affects the decomposition rates negatively at low temperatures and positively at high temperatures. As a net effectâincluding the direct consumption by insects and indirect effects through interactions with microorganismsâinsects accelerate the decomposition in tropical forests (3.9% median mass loss per year). In temperate and boreal forests, we find weak positive and negative effects with a median mass loss of 0.9âper cent and â0.1âper cent per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesized from empirical and remote-sensing data, obtaining an estimate of 10.9â±â3.2âpetagram of carbon per year released from deadwood globally, with 93âper cent originating from tropical forests. Globally, the net effect of insects may account for 29âper cent of the carbon flux from deadwood, which suggests a functional importance of insects in the decomposition of deadwood and the carbon cycle
- âŠ