61 research outputs found

    Exploring Cosmic Origins with CORE: Survey requirements and mission design

    Get PDF
    Future observations of cosmic microwave background (CMB) polarisation havethe potential to answer some of the most fundamental questions of modernphysics and cosmology. In this paper, we list the requirements for a future CMBpolarisation survey addressing these scientific objectives, and discuss thedesign drivers of the CORE space mission proposed to ESA in answer to the "M5"call for a medium-sized mission. The rationale and options, and themethodologies used to assess the mission's performance, are of interest toother future CMB mission design studies. CORE is designed as a near-ultimateCMB polarisation mission which, for optimal complementarity with ground-basedobservations, will perform the observations that are known to be essential toCMB polarisation scienceand cannot be obtained by any other means than adedicated space mission

    Coherent psi (2S) photo-production in ultra-peripheral Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    We have performed the first measurement of the coherent psi(2S) photo-production cross section in ultraperipheral Pb-Pb collisions at the LHC. This charmonium excited state is reconstructed via the psi(2S) -> l(+)l(-) and ->(2S) -> J/psi pi(+)pi(-) decays, where the J/psi decays into two leptons. The analysis is based on an event sample corresponding to an integrated luminosity of about 22 mu b(-1). The cross section for coherent psi(2S) production in the rapidity interval -0.9 <y <0.9is d sigma(coh)(psi(2S))/dy = 0.83 +/- 0.19 (stat+syst) mb. The psi(2S) to J/psi coherent cross section ratio is 0.34(-0.07)(+0.08)(stat+syst). The obtained results are compared to predictions from theoretical models. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V.Peer reviewe

    Search for pair-produced resonances decaying to quark pairs in proton-proton collisions at root s=13 TeV

    Get PDF
    A general search for the pair production of resonances, each decaying to two quarks, is reported. The search is conducted separately for heavier resonances (masses above 400 GeV), where each of the four final-state quarks generates a hadronic jet resulting in a four-jet signature, and for lighter resonances (masses between 80 and 400 GeV), where the pair of quarks from each resonance is collimated and reconstructed as a single jet resulting in a two-jet signature. In addition, a b-tagged selection is applied to target resonances with a bottom quark in the final state. The analysis uses data collected with the CMS detector at the CERN LHC, corresponding to an integrated luminosity of 35.9 fb(-1), from proton-proton collisions at a center-of-mass energy of 13 TeV. The mass spectra are analyzed for the presence of new resonances, and are found to be consistent with standard model expectations. The results are interpreted in the framework of R-parity-violating supersymmetry assuming the pair production of scalar top quarks decaying via the hadronic coupling lambda ''(312) or lambda ''(323) and upper limits on the cross section as a function of the top squark mass are set. These results probe a wider range of masses than previously explored at the LHC, and extend the top squark mass limits in the (t) over tilde -> qq' scenario.Peer reviewe

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Measurement of charged jet production cross sections and nuclear modification in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    Charged jet production cross sections in p-Pb collisions at root s(NN) = 5.02 TeV measured with the ALICE detector at the LHC are presented. Using the anti-k(T) algorithm, jets have been reconstructed in the central rapidity region from charged particles with resolution parameters R = 0.2 and R = 0.4. The reconstructed jets have been corrected for detector effects and the underlying event background. To calculate the nuclear modification factor, R-pPb, of charged jets in p-Pb collisions, a pp reference was constructed by scaling previously measured charged jet spectra at root s = 7 TeV. In the transverse momentum range 20Peer reviewe

    The Wide-Domain Carbon Catabolite Repressor CreA Indirectly Controls Expression of the Aspergillus nidulans xlnB Gene, Encoding the Acidic Endo-β-(1,4)-Xylanase X(24)

    No full text
    The Aspergillus nidulans xlnB gene, which encodes the acidic endo-β-(1,4)-xylanase X(24), is expressed when xylose is present as the sole carbon source and repressed in the presence of glucose. That the mutation creA(d)30 results in considerably elevated levels of xlnB mRNA indicates a role for the wide-domain repressor CreA in the repression of xlnB promoter (xlnBp) activity. Functional analyses of xlnBp::goxC reporter constructs show that none of the four CreA consensus target sites identified in xlnBp are functional in vivo. The CreA repressor is thus likely to exert carbon catabolite repression via an indirect mechanism rather than to influence xlnB expression by acting directly on xlnB
    corecore