5,602 research outputs found
Proteomic analysis of immediate-early response plasma proteins after 70% and 90% partial hepatectomy
AIM: Partial hepatectomy (PH) induces robust hepatic regenerative and metabolic responses that are considered to be triggered by humoral factors. The aim of the study was to identify plasma protein factors that potentially trigger or reflect the body's immediate-early responses to liver mass reduction.
METHODS: Male C57BL/6 mice were subjected to sham operation, 70% PH or 90% PH. Blood was collected from the inferior vena cava at 20, 60 and 180 min after surgery.
RESULTS: Using a label-free quantitative mass spectrometry-based proteomics approach, we identified 399 proteins exhibiting significant changes in plasma expression between any two groups. Of the 399 proteins, 167 proteins had multiple unique sequences and high peptide ID confidence (>90%) and were defined as priority 1 proteins. A group of plasma proteins largely associated with metabolism is enriched after 70% PH. Among the plasma proteins that respond to 90% PH are a dominant group of proteins that are also associated with metabolism and one known cytokine (platelet factor 4). Ninety percent PH and 70% PH induces similar changes in plasma protein profile.
CONCLUSION: Our findings enable us to gain insight into the immediate-early response of plasma proteins to liver mass loss. Our data support the notion that increased metabolic demands of the body after massive liver mass loss may function as a sensor that calibrates hepatic regenerative response
Quantifying the impact of climate change on drought regimes using the Standardised Precipitation Index
The study presents a methodology to characterise short- or long-term drought events, designed to aid understanding of how climate change may affect future risk. An indicator of drought magnitude, combining parameters of duration, spatial extent and intensity, is presented based on the Standardised Precipitation Index (SPI). The SPI is applied to observed (1955–2003) and projected (2003–2050) precipitation data from the Community Integrated Assessment System (CIAS). Potential consequences of climate change on drought regimes in Australia, Brazil, China, Ethiopia, India, Spain, Portugal and the USA are quantified. Uncertainty is assessed by emulating a range of global circulation models to project climate change. Further uncertainty is addressed through the use of a high-emission scenario and a low stabilisation scenario representing a stringent mitigation policy. Climate change was shown to have a larger effect on the duration and magnitude of long-term droughts, and Australia, Brazil, Spain, Portugal and the USA were highlighted as being particularly vulnerable to multi-year drought events, with the potential for drought magnitude to exceed historical experience. The study highlights the characteristics of drought which may be more sensitive under climate change. For example, on average, short-term droughts in the USA do not become more intense but are projected to increase in duration. Importantly, the stringent mitigation scenario had limited effect on drought regimes in the first half of the twenty-first century, showing that adaptation to drought risk will be vital in these regions
Pairing symmetry and properties of iron-based high temperature superconductors
Pairing symmetry is important to indentify the pairing mechanism. The
analysis becomes particularly timely and important for the newly discovered
iron-based multi-orbital superconductors. From group theory point of view we
classified all pairing matrices (in the orbital space) that carry irreducible
representations of the system. The quasiparticle gap falls into three
categories: full, nodal and gapless. The nodal-gap states show conventional
Volovik effect even for on-site pairing. The gapless states are odd in orbital
space, have a negative superfluid density and are therefore unstable. In
connection to experiments we proposed possible pairing states and implications
for the pairing mechanism.Comment: 4 pages, 1 table, 2 figures, polished versio
Probing the Molecular Mechanisms in Copper Amine Oxidases by Generating Heterodimers
For some homodimeric copper amine oxidases (CuAO), there is suggestive evidence of differential activity at the two active sites implying potential cooperativity between the two monomers. To examine this phenomenon for the Arthrobacter globiformis CuAO (AGAO), we purified a heterodimeric form of the enzyme for comparison with the homodimer. The heterodimer comprises an active wild-type monomer and an inactive monomer in which an active-site tyrosine is mutated to phenylalanine (Y382F). This mutation prevents the formation of the trihydroxyphenylalanine quinone (TPQ) cofactor. A pETDuet vector and a dual fusion tag strategy was used to purify heterodimers (WT/Y382F) from homodimers. Purity was confirmed by western blot and native PAGE analyses. Spectral and kinetic studies support the view that whether there are one or two functional monomers in the dimer, the properties of each functional monomer are the same, thus indicating no communication between the active sites in this bacterial enzyme
The 2009 multiwavelength campaign on Mrk 421: Variability and correlation studies
We performed a 4.5-month multi-instrument campaign (from radio to VHE gamma
rays) on Mrk421 between January 2009 and June 2009, which included VLBA,
F-GAMMA, GASP-WEBT, Swift, RXTE, Fermi-LAT, MAGIC, and Whipple, among other
instruments and collaborations. Mrk421 was found in its typical (non-flaring)
activity state, with a VHE flux of about half that of the Crab Nebula, yet the
light curves show significant variability at all wavelengths, the highest
variability being in the X-rays. We determined the power spectral densities
(PSD) at most wavelengths and found that all PSDs can be described by
power-laws without a break, and with indices consistent with pink/red-noise
behavior. We observed a harder-when-brighter behavior in the X-ray spectra and
measured a positive correlation between VHE and X-ray fluxes with zero time
lag. Such characteristics have been reported many times during flaring
activity, but here they are reported for the first time in the non-flaring
state. We also observed an overall anti-correlation between optical/UV and
X-rays extending over the duration of the campaign.
The harder-when-brighter behavior in the X-ray spectra and the measured
positive X-ray/VHE correlation during the 2009 multi-wavelength campaign
suggests that the physical processes dominating the emission during non-flaring
states have similarities with those occurring during flaring activity. In
particular, this observation supports leptonic scenarios as being responsible
for the emission of Mrk421 during non-flaring activity. Such a temporally
extended X-ray/VHE correlation is not driven by any single flaring event, and
hence is difficult to explain within the standard hadronic scenarios. The
highest variability is observed in the X-ray band, which, within the one-zone
synchrotron self-Compton scenario, indicates that the electron energy
distribution is most variable at the highest energies.Comment: Accepted for publication in A&A, 18 pages, 14 figures (v2 has a small
modification in the acknowledgments, and also corrects a typo in the field
"author" in the metadata
Multiphoton Quantum Optics and Quantum State Engineering
We present a review of theoretical and experimental aspects of multiphoton
quantum optics. Multiphoton processes occur and are important for many aspects
of matter-radiation interactions that include the efficient ionization of atoms
and molecules, and, more generally, atomic transition mechanisms;
system-environment couplings and dissipative quantum dynamics; laser physics,
optical parametric processes, and interferometry. A single review cannot
account for all aspects of such an enormously vast subject. Here we choose to
concentrate our attention on parametric processes in nonlinear media, with
special emphasis on the engineering of nonclassical states of photons and
atoms. We present a detailed analysis of the methods and techniques for the
production of genuinely quantum multiphoton processes in nonlinear media, and
the corresponding models of multiphoton effective interactions. We review
existing proposals for the classification, engineering, and manipulation of
nonclassical states, including Fock states, macroscopic superposition states,
and multiphoton generalized coherent states. We introduce and discuss the
structure of canonical multiphoton quantum optics and the associated one- and
two-mode canonical multiphoton squeezed states. This framework provides a
consistent multiphoton generalization of two-photon quantum optics and a
consistent Hamiltonian description of multiphoton processes associated to
higher-order nonlinearities. Finally, we discuss very recent advances that by
combining linear and nonlinear optical devices allow to realize multiphoton
entangled states of the electromnagnetic field, that are relevant for
applications to efficient quantum computation, quantum teleportation, and
related problems in quantum communication and information.Comment: 198 pages, 36 eps figure
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Thermal Conductivity of Carbon Nanotubes and their Polymer Nanocomposites: A Review
Thermally conductive polymer composites offer new possibilities for replacing metal parts in several applications, including power electronics, electric motors and generators, heat exchangers, etc., thanks to the polymer advantages such as light weight, corrosion resistance and ease of processing. Current interest to improve the thermal conductivity of polymers is focused on the selective addition of nanofillers with high thermal conductivity. Unusually high thermal conductivity makes carbon nanotube (CNT) the best promising candidate material for thermally conductive composites. However, the thermal conductivities of polymer/CNT nanocomposites are relatively low compared with expectations from the intrinsic thermal conductivity of CNTs. The challenge primarily comes from the large interfacial thermal resistance between the CNT and the surrounding polymer matrix, which hinders the transfer of phonon dominating heat conduction in polymer and CNT. This article reviews the status of worldwide research in the thermal conductivity of CNTs and their polymer nanocomposites. The dependence of thermal conductivity of nanotubes on the atomic structure, the tube size, the morphology, the defect and the purification is reviewed. The roles of particle/polymer and particle/particle interfaces on the thermal conductivity of polymer/CNT nanocomposites are discussed in detail, as well as the relationship between the thermal conductivity and the micro- and nano-structure of the composite
Recommended from our members
Valorization of biomass wastes into dairy manure–enriched biochar: Application for soil quality amelioration and arsenic remediation
Ten-year chemical signatures associated with long-range transport observed in the free troposphere over the central North Atlantic
Ten-year observations of trace gases at Pico Mountain Observatory (PMO), a free troposphere site in the central North Atlantic, were classified by transport patterns using the Lagrangian particle dispersion model, FLEXPART. The classification enabled identifying trace gas mixing ratios associated with background air and long- range transport of continental emissions, which were defined as chemical signatures. Comparison between the chemical signatures revealed the impacts of natural and anthropogenic sources, as well as chemical and physical processes during long transport, on air composition in the remote North Atlantic. Transport of North American anthropogenic emissions (NA-Anthro) and summertime wildfire plumes (Fire) significantly enhanced CO and O3 at PMO. Summertime CO enhancements caused by NA-Anthro were found to have been decreasing by a rate of 0.67 ± 0.60 ppbv/year in the ten-year period, due possibly to reduction of emissions in North America. Downward mixing from the upper troposphere and stratosphere due to the persistent Azores-Bermuda anticyclone causes enhanced O3 and nitrogen oxides. The d [O3]/d [CO] value was used to investigate O3 sources and chemistry in different transport patterns. The transport pattern affected by Fire had the lowest d [O3]/d [CO], which was likely due to intense CO production and depressed O3 production in wildfire plumes. Slightly enhanced O3 and d [O3]/d [CO] were found in the background air, suggesting that weak downward mixing from the upper troposphere is common at PMO. Enhancements of both butane isomers were found during upslope flow periods, indicating contributions from local sources. The consistent ratio of butane isomers associated with the background air and NA-anthro implies no clear difference in the oxidation rates of the butane isomers during long transport. Based on observed relationships between non-methane hydrocarbons, the averaged photochemical age of the air masses at PMO was estimated to be 11 ± 4 days
- …
