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Abstract

Partial hepatectomy (PH) induces robust hepatic regenerative and metabolic responses that are 

considered to be triggered by humoral factors. The aim of the study was to identify plasma protein 

factors that potentially trigger or reflect the body’s immediate-early responses to liver mass 

reduction. Male C57BL/6 mice were subjected to sham operation, 70% PH, or 90% PH. Blood 

was collected from the inferior vena cava at 20, 60, and 180 minutes after surgery. Using a label-

free quantitative mass spectrometry-based proteomics approach, we identified 399 proteins 

exhibiting significant changes in plasma expression between any two groups. Of the 399 proteins, 

167 proteins had multiple unique sequences and high peptide ID confidence (>90%) and were 

defined as priority 1 proteins. A group of plasma proteins largely associated with metabolism is 

enriched after 70% PH. Among the plasma proteins that respond to 90% PH are a dominant group 

of proteins that are also associated with metabolism and one known cytokine (platelet factor 4). 

Ninety percent PH and 70% PH induces similar changes in plasma protein profile. Our findings 

enable us to gain insight into the immediate-early response of plasma proteins to liver mass loss. 

Our data support the notion that increased metabolic demands of the body after massive liver mass 

loss may function as a sensor that calibrates hepatic regenerative response.
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Introduction

Partial hepatectomy (PH) induces hepatic regenerative and metabolic responses. An 

important aspect of the studies on liver regeneration is identification of the signals that 

trigger the initiation, progression, and termination of hepatic regeneration. Very early 

observations from the studies with parabiotic rats and ectopic transplants of hepatocytes 

provided a critical clue to the source of the signals. When rats were joined in pairs by 
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parabiotic circulation, PH on one rat of the pair induced hepatic regenerative response in the 

other rat [1]. Moreover, PH on orthotopic liver caused a proliferative response in hepatic 

tissue or isolated hepatocytes transplanted extrahepatically into the host [2]. These studies 

convincingly indicated that the signals are humoral factors transmitted by the blood. Since 

then, a number of such factors, including IL-6, TNFα, HGF, and EGF, have been 

discovered. These factors are produced intra- and/or extrahepatically and exert various 

distinct or overlapping effects on liver regeneration [3–6]. For instance, proinflammatory 

cytokines IL-6 and TNFα participate in the induction of an early priming response, which 

renders hepatocytes competent to respond to growth factors. As potent mitogens, HGF and 

EGF stimulate hepatocyte replication. However, it is still unknown whether there are any 

immediate-early humoral factors that are responsible for the initial triggering of liver 

regeneration. Because many of the discovered factors appear in the circulation during liver 

regeneration, blood samples should be valuable in the design of studies aimed at answering 

this question. PH also induces the hepatic metabolic response [7–17]. It has been proposed 

that the increased metabolic demands placed on hepatocytes of the regenerating liver are 

linked to the machinery needed for hepatocyte proliferation and may function as a sensor 

that calibrates the regenerative response according to body demands [4]. Thus, blood 

samples should be valuable in finding humoral factors that reflect the systemic metabolic 

response to liver mass loss. Several groups have analyzed protein profiles in regenerating 

livers with proteomic approaches [18–24]. Those studies provided significant insights into 

the proteome of regenerating liver and identified proteins that are implicated in the 

regulation of liver regeneration. The aim of the present study was to identify blood-borne 

proteins that potentially trigger or reflect the body’s initial responses to liver resection. The 

availability of a powerful quantitative proteomic approach enabled us to pursue the aim by 

profiling immediate-early response plasma proteins in liver regeneration.

The widely used 70% PH was chosen for our study because hepatic regenerative response in 

this model can be precisely timed and is not accompanied by major cellular injury and 

inflammation [6, 25]. Ninety percent PH causes high mortality for unknown reasons. 

However, evidence indicates that the hepatic regenerative response is proportional to the 

extent of liver mass loss [1]. Thus, 90% PH was also utilized to (1) determine whether 90% 

PH induces changes in the immediate-early plasma proteomic profile that are similar to 

those from 70% PH, (2) consolidate the findings from the 70% PH model, and (3) identify 

plasma proteins associated with the extent of liver mass reduction. We used a label-free 

quantitative proteomics approach (LFQP) to profile the global protein expression in mouse 

plasma samples collected at three time points (20, 60 and 180 minutes) after sham operation, 

70% PH, or 90% PH.

Materials and Methods

Mice and PH

C57BL/6 male mice were purchased from The Jackson Laboratory (Bar Harbor, Maine) and 

housed in plastic cages at 22 ± 1 °C on a 12-hour/12-hour light/dark cycle with light on from 

6:00 am to 6:00 pm. Standard rodent chow and water were provided ad libitum throughout 

the entire feeding period. Six-month-old male mice were subjected to sham operation, 70% 
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PH, or 90% PH. Standard 70% liver resection was performed following the procedure 

previously described by others and us [15, 26]. Ninety percent hepatectomy was performed 

by removing all hepatic lobes except for the caudate lobe. In the 70% and 90% PH 

procedures, each lobe to be surgically removed was individually ligated at its root. Surgery 

time for each mouse was determined for the collection of blood at 20, 60, or 180 minutes 

after surgery and between 3:00 pm and 4:00 pm to avoid the circadian clock-associated 

variations in plasma protein concentrations. Before blood collection, intra-abdominal 

inspection was conducted under anesthesia of isoflurane for mice that underwent 90% PH. 

Mice that showed congestion of the intestinal tract and portal system, which occasionally 

occurs as a sign of portal hypertension following 90% PH, were excluded from the 

experiment. Three to five mice were used per time point per surgery group. Blood was 

drawn from the inferior vena cava with the S-Monovette Blood Collection System with 

dried potassium EDTA (Sarstedt AG & Co, Nümbrecht, Germany) under anesthesia of 

isoflurane. Subsequently, blood was centrifuged for 10 minutes at 2,000 x g at room 

temperature to remove blood cells. The supernatant was transferred into an Eppendorf tube 

and then centrifuged for 15 minutes at 2,500 x g at room temperature to separate the 

platelets from the plasma. The plasma was transferred into an Eppendorf tube and stored at 

−80°C until use. All of the animal experiments were conducted in accordance with the 

National Institutes of Health Guide for the Care and Use of Laboratory Animals. Protocols 

for the care and use of animals were approved by the Indiana University-Purdue University 

Indianapolis Animal Care and Use Committee.

Sample preparation for plasma proteomics analysis

Fifty microliters of plasma proteins were denatured in lysis buffer containing 8 M urea and 

10 mM dithiothreitol (DTT) as previously described [27]. Prior to denaturing, high-

abundance plasma proteins were depleted with a Sigma Seppro Mouse Affinity Column 

(Sigma-Aldrich, St. Louis, MO, USA), and protein concentrations were measured by 

Bradford assay [28]. The resulting protein extracts were reduced by triethylphosphine, 

alkylated by iodoethanol, and digested by trypsin [29]. Tryptic peptides were filtered 

through ultra-free MC 0.45-μm filters via centrifugation before they were applied to the 

high-performance liquid chromatography (HPLC) system. To assess the stability of the 

HPLC system and mass spectrometry (MS) instrument, chicken lysozyme (0.5 ng chicken 

lysozyme per μg protein extract) was spiked into to each sample before tryptic digestion as 

an internal reference for quality assessment and quality control.

Liquid Chromatography-Tandem Mass Spectrometry (LC/MS-MS)

Trypic peptides were injected randomly onto the X-Bridge C18 column (Waters, 2.1 mm X 

100 mm) in the Thermo-Fisher Scientific Surveyor HPLC system (Waltham, MA). For 

peptide elution, a linear gradient from 5 to 40% acetonitrile (in water with 0.1% formic acid) 

was developed over 150 minutes at 50°C at a flow rate of 200 μL/min, and effluent was 

electro-sprayed into the LTQ mass spectrometer (Thermo-Fisher Scientific). Blanks were 

run prior to and between the sample runs to ensure that there was no significant signal from 

solvents or the column and that there was no ‘carry-over’. Data were collected in “Triple 

Play” (MS scan, Zoom scan, and MS/MS scan) mode. A proprietary algorithm was applied 

to filter and analyze the acquired data [30]. Database searches were performed with both the 
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Sequest™ and X!Tandem algorithms [31]. The International Protein Index (IPI) Mouse 

database (V. 3.60) was used.

Protein identification

Proteins were classified from priority 1 [highest identification (ID) confidence] to priority 4 

(lowest ID confidence) based on the protein identification quality. The confidence in the 

protein ID is increased with 1) increased peptide ID confidence and 2) a greater number of 

identified distinct amino acid sequences. The “peptide ID confidence” [ID quality of the 

amino acid sequence(s)] of the “best peptide” (the peptide with the highest peptide ID 

confidence) was used to assign each protein to a “high” (between 90 and 100% ID 

confidence), “moderate” (between 75 and 89% ID confidence), or “low” (less than 75% ID 

confidence) ID category, and all low category proteins were discarded before quantification. 

Proteins were also categorized based on the number of distinct amino acid sequences that 

were identified. High category proteins were considered priority 1 if multiple (≥2) unique 

peptide sequences with 90–100% ID confidence were identified; otherwise, they were 

ranked as priority 2. Moderate category proteins were considered priority 3 if multiple (≥2) 

unique sequences with 75–89% ID confidence were identified; otherwise, they were ranked 

as priority 4. The X!Tandem [31] and SEQUEST algorithms were used for amino acid 

sequence ID as previously described [30]. Briefly, each algorithm compared the observed 

peptide MS/MS spectrum and theoretically derived spectrums from the database to assign 

quality scores that were combined with other predictors in a proprietary algorithm to assign 

the overall score, “% ID confidence,” to each peptide.

Protein quantification

The quantification of proteins was performed as previously reported [32]. Raw files were 

obtained from the LTQ mass spectrometer and retention time was used to align all extracted 

ion chromatograms. Relative abundance was determined by the normalized area under the 

curve (AUC) for each individually aligned peak from each sample. The limit of detection of 

protein concentration for the methods and instruments used in the study is about 100 to 200 

ng/mL.

Statistical analysis

ANOVA was used to detect significant changes in protein expression among groups. 

Randomization of the order of measurement and “quantile normalization” were used to 

eliminate technical bias and normalize the data [33]. A log2 scale (a one-unit difference on 

this log scale is equivalent to a two-fold change) was used for normalization. A p value was 

acquired from the ANOVA model to estimate the false positive rate. The p value was 

transformed to a q value by proprietary statistical methods to estimate the false discovery 

rate. The false discovery rate was controlled at 5% (< 0.05) by fixing the q value threshold. 

A change in protein expression between any two groups with a q value < 0.05 was defined 

as a “significant change” or “differential expression”. For each protein, a separate ANOVA 

model was fit with the PROC MIXED function in SAS software (Version 9) (SAS Institute, 

Cary, NC):
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where Log2 (Intensity) is the protein intensity based on the weighted average of the quantile 

normalized log base 2 peptide intensities; Group Effect is the fixed effects (not random) 

caused by the experimental conditions or treatments that are being compared; and Sample 

Effect (nested within group) is the random effects from individual biological samples and 

sample preparation. Positive fold changes (FC), when the mean treated group ≥ mean 

control group, were computed from the means on the AUC scale (antilog): FC = mean 

treated group/mean control group. Negative FCs, when mean control group > mean treated 

group, were computed from the means on the AUC scale (antilog): FC = mean treated 

group/mean control group. Absolute (positive) values of the FCs were computed. The 

median percent coefficient of variation (% CV) for each priority level was determined by 

dividing the standard deviation (SD) by the mean on the AUC scale and is given on a 

percent scale.

Western blot analysis

Plasma samples were separated by polyacrylamide gel electrophoresis under reducing 

conditions. Proteins from the gels were electrophoretically transferred to polyvinylidene 

difluoride membranes. Antibodies against liver fatty acid binding protein (L-FABP) (Cell 

Signaling Technology, Danvers, MA), betaine homocysteine methyltransferase 2 (BHMT2) 

(GeneTex, Irvine, CA), fructose 1,6-bisphosphatase 1 (FBPase-1) (Santa Cruz 

Biotechnology, Santa Cruz, CA), selenium binding protein 1 (SELEBP1) (Aviva Systems 

Biology, San Diego, CA), and albumin (Abcam, Cambridge, MA) were used as probes. 

Immune complexes were detected using the enhanced chemiluminescence system (Pierce, 

Rockford, IL).

Enzyme-linked immunosorbent assay (ELISA) of plasma IL-6

BD OptEIA ELISA kit (Cat# 550950, BD Biosciences, San Jose, CA) was used to detect 

IL-6 levels in the plasma samples according to the manufacturer’s instruction. Five 

microliter of each plasma sample was added to each reaction. The absorbance was measured 

at 450 nm by BioTek synergy HT plate reader. Wavelength correction was performed by 

subtracting the optical density reading at 570 nm from the reading at 450 nm for each 

reaction.

Results

Proteomic profiling

Chicken lysozyme, an internal reference of the technical variation, did not display any 

significant changes in plasma concentrations between any two groups. The maximum fold 

change among any two group comparisons was 1.188 (an 18.8% change) (Supplementary 

Figure 1). This result indicated the reliability of the plasma sample preparation and the 

stability of the HPLC and MS instruments.
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The overall findings from the global plasma protein analysis are summarized in Table 1. 

Among a total of 866 plasma proteins that were identified and quantified, 207 had multiple 

unique sequences with high peptide ID confidence and were listed as priority 1 proteins. 

Significant changes (q < 0.05) between any two groups were observed for 399 plasma 

proteins, of which 167 were priority 1 proteins.

To discover the proteins with significant changes associated with PH types and time points 

after surgery, pair-wise comparisons were performed between three surgery groups (70% 

PH vs. sham, 90% PH vs. sham, and 90% PH vs. 70% PH) at each time point (20, 60, and 

180 minutes) (Table 2). The number of plasma proteins that exhibited significant alterations 

increased temporally, from 5 (at 20 minutes) to 57 (60 minutes) and further to 90 (180 

minutes) in response to 70% PH; from 35 (at 20 minutes) to 52 (60 minutes) and further to 

199 (180 minutes) in response to 90% PH. The temporal patterns of plasma protein 

expression allowed us to identify immediate-early response plasma proteins. When the 90% 

and 70% PH groups were compared, 1 protein at 20 minutes, no proteins at 60 minutes, and 

20 proteins at 180 minutes were found to change significantly (Table 2). The data indicate 

that 90% PH and 70% PH induced similar changes in the plasma protein profile, especially 

during the first hour post-surgery. These 21 proteins that exhibited PH type-dependent 

alterations may be associated with the extent of liver mass loss. The priority, ID, annotation, 

mean protein intensity, fold change, and q value of all identified proteins that exhibited at 

least 1.5-fold changes with a q value < 0.05 are listed in Supplementary Table 1.

Characterization of identified proteins

To identify the proteins that showed robust changes in response to PH, priority 1 proteins 

that displayed at least two-fold changes identified in the 70% and 90% PH groups in 

comparison with the sham groups at each time point were chosen for further analysis (Table 

3). At the earliest time point (20 minutes after surgery), only 1 protein, liver fatty acid 

binding protein (L-FABP), was identified in the 90% PH group. L-FABP is the only priority 

1 protein that we found to be the most immediate-early response plasma protein in the 90% 

PH group. The elevation of L-FABP in plasma abundance lasted through the first three 

hours and was most dramatic (5.1-fold) at 180 minutes, although only a 1.72-fold change 

was observed at 60 minutes (Supplementary Table 1), following surgery. At 60 minutes 

post-PH, only 1 protein, betaine-homocysteine S-methyltransferase 2 (BHMT2), was found 

to be significantly increased in the plasma in response to both 70% and 90% PH. BHMT2 is 

the only most immediate-early response plasma protein that was found in both PH groups. 

Plasma expression of BHMT2 further increased at 180 minutes by 4.6- and 5.7-fold in 

response to 70% and 90% PH, respectively. At 180 minutes post-PH, plasma protein 

responses became robust. Nineteen common proteins between the 70% and 90% PH group 

were observed. The plasma concentrations of these common proteins were all increased with 

fold changes that ranged from 2.0 to 5.7 in comparison to the sham controls. Strikingly, all 

but 2 proteins (L-FABP and a putative uncharacterized protein) are metabolic enzymes. At 

180 minutes following PH, 3 proteins were identified solely in the 70% PH group, whereas 

25 proteins were observed solely in the 90% PH group. Interestingly, 12 proteins that were 

reduced in plasma abundance by at least 2-fold compared to the sham controls were found 

exclusively in the 90% PH group at 180 minutes after surgery. Five proteins (major urinary 
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proteins 2, 3, and 5, major urinary protein gene family member 3, and Mup1 protein) of the 

12 identified proteins belong to the major urinary protein family.

To find plasma proteins associated with the extent of liver mass reduction, the plasma 

protein profile of the 90% PH group was compared with that of the 70% PH group with less 

stringency (q < 0.05 with minimum change of 1.5-fold). None of the proteins were found at 

20 and 60 minutes after PH. Even at 180 minutes, only 8 proteins were observed (Table 4). 

The data indicated that 90% PH and 70% PH induced similar plasma protein responses 

during the first three hours post-surgery. These 8 proteins may be associated with the extent 

of liver mass decrease.

To define the major biological processes in which the identified plasma proteins are 

involved, the PANTHER (Protein ANalysis THrough Evolutionary Relationships) 

Classification System (http://www.patherdb.org) was used to group all priority 1 proteins 

listed in Table 3 based on their biological functions. In this program, one protein could be 

categorized into multiple biological function groups. In the 70% PH group, a total of 22 

proteins were analyzed, excluding 1 protein due to unknown function (Table 5). These 21 

proteins were categorized into three main function groups: metabolic process, immune 

system response, and response to stimulus. Fourteen of the 21 proteins (66.67%) are 

associated with the metabolic process. In the 90% PH group, 44 proteins were input into the 

program, and 13 proteins were excluded due to unknown identity or function. Thus, a total 

of 31 proteins were analyzed (Table 6). As a result, the majority of the proteins (19 proteins, 

61.3% of the 31 proteins) participate in the metabolic process. A less dominant group of 

proteins (13 proteins) are associated with immune system response. Ten proteins participate 

in response to stimulus. Taken together, these data demonstrate that, regardless of the extent 

of liver mass loss, most of the immediate-early response plasma proteins are involved in the 

metabolic process.

We found 6 typical patterns that can be used to monitor the alterations of plasma protein 

expression during the first three hours after PH. The representative proteins that exhibit 

those patterns are depicted in Figure 1. The identification of these patterns helps us to 

determine how a protein behaves in plasma expression after PH and whether such behavior 

depends on the extent of liver mass loss.

To verify the global proteomic data, the plasma expression of several selected proteins was 

analyzed by western blotting (Figure 2). L-FABP plasma abundance increased slightly at 60 

and 180 minutes following 70% PH and was highest at 180 minutes after 90% PH. BHMT2 

plasma levels were elevated 60 minutes and 180 minutes after 70% PH and 90% PH in 

comparison with the sham controls. Plasma FBPase1 was only detected at 180 minutes after 

both types of PH. A PH-dependent increase in SELEBP1 plasma expression was most 

evident at 180 minutes post-70% PH. Collectively, the results revealed plasma expression 

patterns of these proteins that are similar to those demonstrated by quantitative proteomic 

analysis.

Using ELISA assays, several groups demonstrated that PH induces increases in protein 

concentrations of several cytokines and growth factors, such as IL-6, TNFα, and HGF, in 
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the circulation [34, 35]. However, those proteins were not detected in our plasma samples 

using the LFQP approach. To evaluate whether those proteins exist in our plasma samples, 

we quantified IL-6, a typical proinflammatory cytokine associated with liver regeneration, 

by ELISA assay in aliquots of plasma samples used in the proteomic analysis (Fig. 3). As a 

result, circulating IL-6 protein exhibited significant increases at 180 minutes after both 70% 

and 90% PH in comparison with sham controls. The average IL-6 concentration was 1,193 

pg/mL in the blood at 180 minutes following 70% PH, resembling previous reports [34, 35]. 

At the same time point, IL-6 protein displayed higher magnitude of response to 90% PH 

compared with 70% PH, reaching 2,165 pg/mL. The result suggests that PH-induced 

enrichment of circulating IL-6 did not reach a level that can be detected by the proteomic 

approach.

Discussion

Our study revealed a group of plasma proteins associated with the body’s immediate-early 

responses to massive liver mass loss. It is well established that 70% PH induces robust 

hepatic regenerative response. Thus, we anticipated that, with this model, cytokines or 

growth factors associated with inflammatory response, cell proliferation, or organ growth 

could be identified as protein factors that participate in triggering hepatic regeneration. 

Surprisingly, no such factors were found among all priority 1 proteins exhibiting at least 2-

fold or even 1.5-fold changes during the first three hours after 70% PH (Table 3 and 

Supplementary Table 1). Notably, in the 90% PH model, only one cytokine, platelet factor 4 

(PF4), was identified as a priority 1 protein at 180 minutes following surgery (Table 3). PF4 

is involved in inflammation and wound healing [36]. Here we linked PF4 with liver 

regeneration. Further studies are needed to determine whether PF4 plays a role in mediating 

hepatic regenerative responses. Remarkably, in both the 70% and 90% PH models, the 

majority of the plasma proteins identified are catalytic enzymes (Table 3) and most of the 

proteins are associated with metabolism (Tables 5 and 6). Among the 22 and 37 priority 1 

proteins with known identity in the 70% PH and 90% PH groups, 20 (90.9%) and 22 

(59.5%) are catalyzing enzymes, respectively (Table 3). The findings suggest that systemic 

metabolic changes may dominate the most immediate-early responses of the body to liver 

mass reduction. Several lines of evidence implicate the connection of metabolic pathways 

with DNA replication during liver regeneration [7, 8, 11, 37–42]. PH or transplantation of 

reduced-size livers may lead to a hypermetabolic state [43]. Our findings support the notion 

that increased metabolic demands of the body may function as a sensor that calibrates the 

hepatic regenerative response [4]. This notion is further supported by a very recent report 

that demonstrates that pancreatic beta cell regeneration is controlled by glucose metabolism 

[44].

One intriguing question is how the enzymes identified in the current study are released into 

the blood stream. Most of the enzymes are known to be expressed in the liver. Increased 

concentrations of liver enzymes in the blood are often considered to be indicative of hepatic 

damage. However, it is well established that 70% PH triggers robust hepatic regenerative 

response without major cellular injury and is considered to be a clean model for studying 

liver regeneration [25]. Indeed, plasma levels of alanine aminotransferase (ALT) and 

sorbitol dehydrogenase (SDH), which are often used to evaluate liver injury, were not 
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significantly changed during the first three hours, whereas plasma level of aspartate 

transaminase (AST), another liver injury index, was increased only by 1.61-fold at 180 

minutes after 70% PH (Supplemental Table 1). The data indicate that liver injury was 

minimal in mice subjected to 70% PH within the first three hours after surgery. Similar 

plasma protein profiles between 70% PH and 90% PH are also indicative of minimal liver 

injury in mice subjected to 90% PH during the period. Furthermore, a comparison of the 

plasma protein profiles between the 70% PH group and the 90% PH group did not elicit any 

significant differences at each time point in the plasma concentrations of ALT, AST, and 

SDH (Supplemental Table 1). If hepatic cellular damage is the cause of increased 

concentrations of liver enzymes in the circulation, then we would see the appearance of a 

full panel of liver enzymes, including phase I metabolic enzymes that are abundant in 

hepatocytes, in the blood. However, none of the cytochrome P450 monooxygenases 

exhibited more than 1.5-fold PH-dependent changes at any time point during the first three 

hours after PH. At this juncture, we are not able to address the question of how metabolic 

enzymes are released into the blood without major liver injury after PH. We believe that the 

appearance of those enzymes in the circulation may reflect a hypermetabolic state in the 

remaining liver following PH.

A number of proteins identified in our studies are associated with lipid, amino acid, and 

glucose metabolism and phase II detoxification. L-FABP belongs to a family of small and 

highly conserved proteins that bind long-chain fatty acids and play important roles in fatty 

acid uptake, transport, and metabolism [45]. However, a lack of L-FABP has no apparent 

effect on liver regeneration, although hepatic fat accumulation is reduced [46]. Thus, a 

redundant mechanism should exist if L-FABP participates in inducing immediate-early 

response during liver regeneration. A group of identified proteins are associated with amino 

acid metabolism, including BHMT2, BHMT, glycine N-methyltransferase, cystathionine 

gamma-lyase, argininosuccinate lyase, 4-hydroxyphenylpyruvate dioxygenase, and 

fumarylacetoacetate hydrolase [47–51]. Rapid increases of these enzymes in plasma 

expression after PH may reflect the enhancement of amino acid metabolism in response to 

liver mass decrease. Two identified proteins associated with glucose metabolism are 

fructose 1,6-bisphosphatase 1 and fructose bisphosphatase aldolase B [52, 53], which might 

be indicative of the enhancement of hepatic gluconeogenesis to compensate for a blood 

glucose deficiency caused by PH. Plasma protein levels of 5 members of the glutathione S-

transferase (GST) family (GST P1, P2, Mu1, Mu7, and A3) were elevated by 2.1- to 4.3- 

fold, regardless of the extent of liver mass loss (Table 3). GSTs are major phase II 

detoxification enzymes that also carry out a range of other functions, including steroid and 

leukotriene biosynthesis, peroxide degradation, and ligand binding and transport [54]. Thus, 

increases of those GSTs in plasma concentration may reflect hepatic metabolic response to 

PH to compensate for the reduced capacity of xenobiotic and endobiotic metabolism in the 

remaining liver. We observed that plasma expression of 5 major urinary proteins (MUPs) 

was decreased at 180 minutes after 90% PH (Table 3). MUPs are a family of proteins that 

contain a conserved β-barrel structure with a characteristic central hydrophobic pocket. They 

are secreted by the liver, are excreted into the urine, and function as regulators of pheromone 

signaling [55]. Very recent studies revealed a novel function of MUPs in regulating glucose 

and lipid metabolism. MUP1 suppresses hepatic gluconeogenesis and lipogenesis and 
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promotes energy expenditure in skeletal muscle [56, 57]. Thus, the decrease of plasma 

expression of MUPs may stimulate hepatic glucose and lipid synthesis to meet the body’s 

metabolic needs after PH. Collectively, most of the proteins identified in our study are 

involved in a broad range of metabolic processes, which might reflect the hypermetabolic 

state of partially hepatectomized liver.

We found that 70% PH and 90% PH induced similar changes in the plasma protein profile 

within the first three hours after surgery. When these two PH groups were compared, only 8 

priority 1 proteins displayed changes above 1.5-fold in the plasma concentration at 180 

minutes after surgery, whereas none of the priority 1 proteins showed such changes at 20 

and 60 minutes following surgery (Table 4). The data suggest that, irrespective of the 

percentage of liver mass loss, hepatectomy induces similar immediate-early responses in 

plasma protein profile. In contrast to rats who can survive from 90% PH, mice subjected to 

90% PH usually die within 24 hours of surgery, most likely due to the impact of portal vein 

pressure on hepatic artery flow and/or insufficient liver metabolic capacity [25, 58]. 

However, in the study of parabiotic rats in pairs, total removal of the liver in one rat induced 

maximum regenerative response in the intact liver of the other rat in the pair [1]. This 

previous observation indicated that the removal of the entire liver can induce the strongest 

regenerative response. In line with this finding, our data suggest that the immediate-early 

response of the body to 90% PH is intact and hepatic regeneration failure caused by 90% PH 

may be due to the later events that occur after the initiation stage of liver regeneration.

Notably, proinflammatory cytokines and growth factors known to be associated with liver 

regeneration, including IL-6, TNFα, and HGF, are not in the list of the proteins detected in 

our study. It is known that mRNA expression of hepatic IL-6, TNFα, and HGF is 

upregulated within the first few hours after PH [35, 59]. However, none of the reported 

proteomic studies detected those proteins in the liver after PH [18–20, 22]. IL-6, TNFα, and 

HGF proteins were also not detectable by western blotting analysis in the remnant livers in 

the first three hours following PH in the current study (data not shown). We did not find any 

reports showing PH-dependent expression of these proteins in the liver by western blotting 

analysis. Thus, it is likely that the abundance of these proteins in regenerating livers is still 

too low to be detected by proteomic and immunoblotting approaches. Using ELISA assay, 

several groups demonstrated that the levels of circulating IL-6, TNFα, IL-1β and HGF are 

rapidly increased following PH [34, 35, 60–62]. Within the first four hours post-70% PH in 

mice, the highest concentrations of those proteins in the blood were 1,000 to 2,000 pg/mL 

for IL-6 [34, 35, 60], approximate 15 pg/mL for TNFα [34, 35], around 100 pg/mL for IL-1β 

[34], and about 1,250 pg/mL for HGF [34]. We quantified IL-6 protein in our plasma 

samples used for the proteomic study by ELISA assay. The average plasma IL-6 

concentration elevated to1,193 pg/mL at 180 minutes after 70% PH (Fig. 3), which is within 

the reported range. At the same time point, 90% PH further increased the level of plasma 

IL-6 protein to 2,165 pg/mL (Fig. 3). However, IL-6, TNFα, and HGF were not detected in 

our plasma samples by western blotting analysis (data not shown). Therefore, plasma 

abundance of those proteins may not reach a level that can be detected by either proteomic 

approach used in the current study or immunoblotting measurement. Vice versa, the 

sensitivity of the proteomic approach may not allow for profiling very low-abundance 

proteins in the blood.
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Our study demonstrated the value and robustness of the LFQP approach in evaluating 

hepatic regenerative and metabolic responses during liver regeneration by profiling plasma 

proteins. However, our study has several limitations. Fourteen priority 1 proteins (1 in the 

70% PH group and 13 in the 90% PH group, Tables 5 & 6) that displayed at least 2-fold 

changes could not be identified and, thus, cannot be analyzed due to incomplete annotation 

of the mouse protein database. In addition, priority 2, 3, and 4 proteins were not included in 

our analysis because of low protein identification confidence. It is likely that some important 

proteins associated with hepatic regenerative and metabolic responses are among those 

unknown proteins and, thus, have not been identified or analyzed by our study. Moreover, 

our study suggests that the LFQP approach may not be sensitive enough to detect very low-

abundance proteins in the blood.

In summary, using the proteomic approach and two PH models, we analyzed plasma protein 

profiles within the first three hours after PH. A group of immediate-early response plasma 

proteins was revealed in each PH model. A group of proteins largely associated with 

metabolism exhibits an increase in plasma abundance after 70% PH. Moreover, 90% PH 

induces plasma protein responses similar to 70% PH. A dominant group of proteins 

associated with metabolism and one known cytokine (platelet factor 4) significantly respond 

to 90% PH. Our findings suggest that systemic metabolic responses might be an important 

factor to consider in the future efforts on identifying the initial trigger of liver regeneration.
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PH partial hepatectomy

IL-6 interleukin 6

TNF tumor necrosis factor

EGF epidermal growth factor

HGF hepatocyte growth factor

L-FABP liver fatty acid binding protein

BHMT betaine-homocysteine S-methyltransferase

FBPase fructose 1,6-bisphosphatase

SELEBP selenium binding protein

CV coefficient of variation

FC fold change
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Fig. 1. Representative proteins showing typical patterns of plasma protein expression 20, 60, and 
180 minutes after sham operation, 70% partial hepatectomy (PH), or 90% PH
Six major patterns of plasma protein expression were noted and a representative protein 

displaying each pattern is presented in panels A to F. The mean Log2 intensity ± SE (y-axis) 

is shown for each protein (a difference of one unit is equivalent to a two-fold change). The 

x-axis is labeled with three experiment groups (sham operation group, 70% PH group, and 

90% PH group) and three time points after surgery (20 minutes, 60 minutes, and 180 

minutes).). FBPase-1, fructose 1,6-bisphosphatase 1; LFABP, liver fatty acid binding 

protein; MUP-5, major urinary protein 5; SAA-1, serum amyloid A-1 protein; SELENBP-2, 

selenium-binding protein 2.
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Fig. 2. Plasma protein levels of L-FABP, BHMT2, FBPase-1, and SELEBP1 after partial 
hepatectomy (PH)
Blood was collected 20, 60 or 180 minutes after sham operation, 70% PH, or 90% PH. 

EDTA-plasma was prepared. Aliquots of plasma from each mouse per time point per 

surgery group were combined. One microliter of each combined plasma sample was 

subjected to western blotting with antibodies against the proteins indicated. Albumin protein 

levels were used as loading controls. L-FABP, liver fatty acid binding protein; BHMT2, 

betaine-homocysteine S-methyltransferase 2; FBPase-1, fructose 1,6-bisphosphatase 1; and 

SELEBP1, selenium binding protein 1.
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Fig. 3. Plasma interleukin 6 (IL-6) levels after partial hepatectomy (PH)
Mice were subjected to sham operation, 70% PH, or 90% PH. Blood was collected from the 

inferior vena cava at 20, 60, or 180 minutes after surgery. EDTA-plasma was prepared and 

used for IL-6 quantification by assay. **, P < 0.01; ***, P < 0.001 in comparison with sham 

operation controls (n= 3–5).
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