866 research outputs found

    Spatial entanglement of twin quantum images

    Full text link
    We show that spatial entanglement of two twin images obtained by parametric down-conversion is complete, i.e. concerns both amplitude and phase. This is realised through a homodyne detection of these images which allows for measurement of the field quadrature components. EPR correlations are shown to exist between symmetrical pixels of the two images. The best possible correlation is obtained by adjusting the phase of the local oscillator field (LO) in the area of maximal amplification. The results for quadrature components hold unchanged even in absence of any input image i.e. for pure parametric fluorescence. In this case they are not related to intensity and phase fluctuations.Comment: 19 pages, 2 figure

    Quantum correlations of two optical fields close to electromagnetically induced transparency

    Full text link
    We show that three-level atoms excited by two cavity modes in a Λ\Lambda configuration close to electromagnetically induced transparency can produce strongly squeezed bright beams or correlated beams which can be used for quantum non demolition measurements. The input intensity is the experimental "knob" for tuning the system into a squeezer or a quantum non demolition device. The quantum correlations become ideal at a critical point characterized by the appearance of a switching behavior in the mean fields intensities. Our predictions, based on a realistic fully quantum 3-level model including cavity losses and spontaneous emission, allow direct comparison with future experiments.Comment: 4 pages, 5 figure

    Fluctuations and correlations in hexagonal optical patterns

    Get PDF
    We analyze the influence of noise in transverse hexagonal patterns in nonlinear Kerr cavities. The near field fluctuations are determined by the neutrally stable Goldstone modes associated to translational invariance and by the weakly damped soft modes. However these modes do not contribute to the far field intensity fluctuations which are dominated by damped perturbations with the same wave vectors than the pattern. We find strong correlations between the intensity fluctuations of any arbitrary pair of wave vectors of the pattern. Correlation between pairs forming 120 degrees is larger than between pairs forming 180 degrees, contrary to what a naive interpretation of emission in terms of twin photons would suggest.Comment: 10 pages, 13 figure

    Backscattering Differential Ghost Imaging in Turbid Media

    Full text link
    In this Letter we present experimental results concerning the retrieval of images of absorbing objects immersed in turbid media via differential ghost imaging (DGI) in a backscattering configuration. The method has been applied, for the first time to our knowledge, to the imaging of small thin black objects located at different depths inside a turbid solution of polystyrene nanospheres and its performances assessed via comparison with standard imaging techniques. A simple theoretical model capable of describing the basic optics of DGI in turbid media is proposed.Comment: 5 pages, 6 figure

    Cavity Light Bullets: 3D Localized Structures in a Nonlinear Optical Resonator

    Full text link
    We consider the paraxial model for a nonlinear resonator with a saturable absorber beyond the mean-field limit and develop a method to study the modulational instabilities leading to pattern formation in all three spatial dimensions. For achievable parametric domains we observe total radiation confinement and the formation of 3D localised bright structures. At difference from freely propagating light bullets, here the self-organization proceeds from the resonator feedback, combined with diffraction and nonlinearity. Such "cavity" light bullets can be independently excited and erased by appropriate pulses, and once created, they endlessly travel the cavity roundtrip. Also, the pulses can shift in the transverse direction, following external field gradients.Comment: 4 pages, 3 figures, simulations files available at http://www.ba.infn.it/~maggipin/PRLmovies.htm, submitted to Physical Review Letters on 24 March 200

    Probabilistic Approach to Pattern Selection

    Full text link
    The problem of pattern selection arises when the evolution equations have many solutions, whereas observed patterns constitute a much more restricted set. An approach is advanced for treating the problem of pattern selection by defining the probability distribution of patterns. Then the most probable pattern naturally corresponds to the largest probability weight. This approach provides the ordering principle for the multiplicity of solutions explaining why some of them are more preferable than other. The approach is applied to solving the problem of turbulent photon filamentation in resonant media.Comment: LaTex, 22 page

    Noise and Order in Cavity Quantum Electrodynamics

    Get PDF
    In this paper we investigate the various aspects of noise and order in the micromaser system. In particular, we study the effect of adding fluctuations to the atom cavity transit time or to the atom-photon frequency detuning. By including such noise-producing mechanisms we study the probability and the joint probability for excited atoms to leave the cavity. The influence of such fluctuations on the phase structure of the micromaser as well as on the long-time atom correlation length is also discussed. We also derive the asymptotic form of micromaser observables.Comment: 31 pages and 8 figure
    corecore