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Abstract

Thermally conductive polymer composites offer nevggbilities for replacing metal parts in
several applications, including power electronmgctric motors and generators, heat exchangers
etc., thanks to the polymer advantages such as$ Wghght, corrosion resistance and ease of
processing. Current interest to improve the theromdductivity of polymers is focused on the
selective addition of nanofillers with high thermabnductivity. Unusually high thermal
conductivity makes carbon nanotube (CNT) the besising candidate material for thermally
conductive composites. However, the thermal condties of polymer/CNT nanocomposites are

relatively low compared with expectations from th&insic thermal conductivity of CNTs. The



challenge primarily comes from the large interfatheermal resistance between the CNT and the
surrounding polymer matrix, which hinders the tfan®f phonon dominating heat conduction in

polymer and CNT.

This article reviews the status of worldwide reshan the thermal conductivity of CNTs and
their polymer nanocomposites. The dependence ahtleconductivity of nanotubes on the atomic
structure, the tube size, the morphology, the dedad the purification is reviewed. The roles of
particle/polymer and particle/particle interfaces the thermal conductivity of polymer/CNT
nanocomposites are discussed in detail, as wétleaelationship between the thermal conductivity

and the micro- and nano-structure of the compasites
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Nomenclature

ABS poly(acrylonitrile-butadiene-styrene) copolymer
AIN aluminum nitride

BeO beryllium oxide

BN boron nitride

BNNT boron nitride nanotubes

CNT carbon nanotube

Co heat capacity

DSC differential scanning calorimetry

DWCNT double-walled carbon nanotube

EG expanded graphite

EPDM ethylene propylene diene rubber

EVA poly(ethylene vinyl acetate)

GNP graphite nanoplatelet

HDPE high density polyethylene

Kk thermal conductivity (in some figures taken frotedature referred ascKeffective

thermal conductivity)

Ke thermal conductivity of composite
K thermal conductivity of matrix
Ko thermal conductivity of particle
I phonon mean free path

L length parameter

LDPE low density polyethylene

MD molecular dynamics

MWCNT  multi-walled carbon nanotube
ODA oxydianiline

PAG6 polyamide 6

PAG6 polyamide 6-6

PBT poly(butylene terephthalate)
PC polycarbonate

PDMS poly(dimethylsiloxane)

PE polyethylene

PEEK polyetheretherketone

PET poly(ethylene terephthalate)
PEVA poly(ethylene vinyl alcohol)

Pl polyimide

PMDA pyromellitic dianhydride
PMMA polymethylmethacrylate



polypropylene
polyphenylene sulfide

polyphenylsulfone
polystyrene

polysulfone
polytetrafluoroethylene
polyurethane

poly(vinyl butyral)

polyvinyl chloride
polyvinylidene difluoride
interfacial resistance
sodium dodecyl sulphate
silicon carbide
single-walled carbon nanotube
glass transition temperature
average phonon velocity
vapor grown carbon fiber
thermal diffusivity

density of the material
volume fractions of matrix
volume fractions of particles



1 Introduction

1.1 Limitation of Thermal Conductivity of Polymers

1.1.1 Low Thermal Conductivity

Heat transfer involves the transport of energy fmma place to another by energy carriers. In a gas
phase, gas molecules carry energy either by randolacular motion (diffusion) or by an overall
drift of the molecules in a certain direction (adwen). In liquids, energy can be transported by
diffusion and advection of molecules. In solidsppbns, electrons, or photons transport energy.
Phonons, quantized modes of vibration occurringairrigid crystal lattice, are the primary
mechanism of heat conduction in most polymers sfrexe movement of electrons is not possible
[1]. In view of theoretical prediction, the Debygquation is usually used to calculate the thermal

conductivity of polymers.

A==+ (1)

WhereC, is the specific heat capacity per unit volumes the average phonon velocity; dnd the

phonon mean free path.

For amorphous polymers,is an extremely small constant (i.e., a few argss) due to phonon



scattering from numerous defects, leading to a le@wthermal conductivity of polymers [2]. Table

1 displays the thermal conductivities of some p@ys1[3,4,5].

1.1.2 Cirystallinity and Temperature Dependence

Polymer crystallinity strongly affects their therdnr@nductivity, which roughly varies from 0.2
W/m:-K for amorphous polymers such as polymethylmetHatey(PMMA) or polystyrene (PS), to
0.5 W/mK for highly crystalline polymers as high-densitglyethylene (HDPE) [4]. The thermal
conductivity of semi-crystalline polymers is repattto increase with crystallinity. As an example,
the thermal conductivity of polytetrafluoroethyle(@TFE) was found to increase linearly with

crystallinity at 232°CY].

However, there is a large scatter in the reportgueemental data of thermal conductivity of
crystalline polymers, even including some contritic results. It should be noticed that the
thermal conductivities of polymers depend on maamtdrs, such as chemical constituents, bond
strength, structure type, side group molecular hteigholecular density distribution, type and
strength of defects or structural faults, sizendéimediate range order, processing conditions and
temperature, etc. Furthermore, due to the phonattesing at the interface between the amorphous
and crystalline phase and complex factors on dtiystg of polymer, the prediction of the thermal

conductivity vs crystallinity presents a signifitaiegree of complexity.

Semicrystalline and amorphous polymers also vangiderably in the temperature dependence of

the thermal conductivity. At low temperature, serystalline polymers display a temperature
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dependence similar to that obtained from highly enfgct crystals, having a maximum in the
temperature range near 100 K, shifting to lowerperatures and higher thermal conductivities as
the crystallinity increases,f], while amorphous polymers display temperatureedeignce similar

to that obtained for inorganic glasses with no mmaxn, but a significant plateau region at low
temperature rang€][ The thermal conductivity of an amorphous polyrimereases with increasing
temperature to the glass transition temperafTy While it decreases aboig [*°,'"]. The study of
the thermal conductivity of some amorphous andiglbrtcrystalline polymers (PE, PS, PTFE and
epoxy resin) as a function of temperature in a comimse range (273-373 K) indicates that the
conductivity of amorphous polymers increases wempgerature and that the conductivity is

significantly higher in crystalline than amorphaesions {?.

From the general overview given in the precedihgppears that very limited thermal conductivity
is usually characteristic of polymers. On the ott@nd, there are many reasons to increase thermal
conductivity of polymer-based materials in variongustrial applications including circuit boards

in power electronics, heat exchangers, electroamsliances and machinery. This justifies the
recent significant research efforts on thermallypdigcctive composite materials to overcome the

limitations of traditional polymers.

1.2 Fillers for Thermally Conductive Composites

Many applications would benefit from the use ofymoérs with enhanced thermal conductivity. For

example, when used as heat sinks in electric antrel@c systems, composites with a thermal



conductivity approximately from 1 to 30 Wik are required f]. The thermal conductivity of
polymers has been traditionally enhanced by th&tiaddf thermally conductive fillers, including
graphite, carbon black, carbon fibers, ceramic etamparticles (see Table 2Y{°>2 9. It is
worth noticing that significant scatter of data geical of data reported for thermal conductivaty
fillers. This is caused by several factors, inahgdffiller purity, crystallinity, particle size and
measurement method. It is also important to poiurtthat some materials, typically fibers and

layers, are highly anisotropic and can show mugfdti conductivity along a main axis or on a

plane, compared to perpendicular direction.

High filler loadings (> 30 vol.%) are typically nessary to achieve the appropriate level of thermal
conductivity in thermally conductive polymer comfies, which represents a significant processing
challenge. Indeed, the processing requirements) aacpossibility to be extruded and injection
molded, often limit the amount of fillers in therfoulation and, consequently, the thermal
conductivity performance'{]. Moreover, high inorganic filler loading dramatlly alters the
polymer mechanical behavior and density. For tlieasons, obtaining composites having thermal

conductivities higher than 4 Wfi and usual polymer processability is very challagat present.

1.2.1 Carbon-Based Fillers

Carbon-based fillers appear to be the best promidiers, coupling high thermal conductivity and
lightweight. Graphite, carbon fiber and carbon klace well-known traditional carbon-based fillers.

Graphite is usually recognized as the best congriitier because of its good thermal conductivity,
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low cost and fair dispersability in polymer matfi¥,?]. Single graphene sheets constituting
graphite show intrinsically high thermal condudiviof about 800 W/nK [??] or higher
(theoretically estimated to be as high as 5300 W/fi>%Y), this determining the high thermal
conductivity of graphite, usually reported in tlzange from 100 to 400 WHRK. Expanded graphite
(EG), an exfoliated form of graphite with layers2ff nm to 100 nm thickness, has also been used
in polymer composites?]], for which the thermal conductivity depends oe #xfoliation degree

[?9), its dispersion in matrixX’[] and the aspect ratio of the E&]|

Carbon fiber, typically vapor grown carbon fiberGQZF), is another important carbon-based filler.
Polymer/VGCF composites have been reviewed by Tible al. {°]. Since VGCF is composed of
an annular geometry parallel to the fiber axistrtiad conductive properties along the fiber axis are
very different from the transverse direction (estied up to 2000 W/iK in the axial direction
versus 10~110 W/ in the transverse direction ¥,3']), directly affecting the thermal

conductivity of aligned composite¥ .

Carbon black particles are aggregates of graphiteonrystals and characteristic of their particle
size (10-500 nm) and surface area (25-130g)1{14]. Carbon black is reported to contribute to

electrical conductivity rather than thermal condkity [ 3*3°3.

1.2.2 Metallic Fillers

The filling of a polymer with metallic particles maesult in both increase of thermal conductivity

and electrical conductivity in the composites. Hoare a density increase is also obtained when
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adding significant metal loadings to the polymertma thus limiting applications when
lightweight is required. Metallic particles usedr fthermal conductivity improvement include
powders of aluminum, silver, copper and nickel.yRars modified with the inclusion of metallic
particles include polyethylené’T polypropylene 19, polyamide £, polyvinylchloride and epoxy
resins f°], showing thermal conductivity performarce depeiddn the thermal conductivity of the
metallic fillers, the particle shape and size, #dume fraction and spatial arrangement in the

polymer matrix.

1.2.3 Ceramic Fillers

Ceramic powder reinforced polymer materials havenbgsed extensively as electronic materials.
Being aware of the high electrical conductivityroétallic particles, several ceramic materials such
as aluminum nitride (AIN), boron nitride (BN), sitin carbide (SiC) and beryllium oxide (BeO)
gained more attention as thermally conductive rBlidue to their high thermal conductivity and
electrical resistivity {",*3]. Thermal conductivities of composites with cerarfiller are influenced
by filler packing density’f], particle size and size distributiof{"{”], surface treatmenf9 and

mixing methods{7.

1.3 Thermal conductivity - Measurement and Modelling

1.3.1 Methods for thermal conductivity measurements

Several methods, as reviewed elsewh& &’ have been proposed and used for measurement of

12



the thermal conductivity of polymers and compositelassical steady-state methods measure the
temperature difference across the specimens iromespto an applied heating power, either as an
absolute value or by comparison with a referenctena put in series or in parallel to the sample
to be measured. However, these methods are ofte donsuming and require relatively bulky

specimens.

Several non steady-state methods have also beesioged, including hot wire and hot plate
methods, temperature wave method and laser fladimitpies [49]. Among these, laser-flash
thermal diffusivity measurement is widely used, nigeia relatively fast method, using small
specimens™,>},>4. In this method, the sample surface is irradiatéti a very short laser pulse and
the temperature rise is measured on the opposlitec$ithe specimen, permitting calculation of the

thermal diffusivity of the material, after propeathematical elaboration. The thermal conductivity

k is then calculated according to equation 2.
k=alC_ [p (2)
Wherea, C, andp are the thermal diffusivity, heat capacity andsignrespectively.

Differential scanning calorimetry (DSC) methods maso be used, applying an oscillary] [or

step temperature profil&’] and analyzing the dynamic response.

Significant experimental error may be involved hermal conductivity measurements, due to

difficulties in controlling the test conditions,duas the thermal contact resistance with the sgmpl
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leading to accuracy of thermal conductivity measwets typically in the range of 5~10%. In
indirect methods, such as those calculating tharthleconductivity from the thermal diffusivity,
experimental errors on density and heat capacilyegawill also contribute to the experimental

error in the thermal conductivity.

1.3.2 Modelling of thermal conductivity in composites

Several different models developed to predict therrhal conductivity of traditional polymer

composites are reviewed elsewhere|®’,>¥. The fundamentals are recalled in this section.

The two basic models representing the upper boauddtze lower bound for thermal conductivity
of composites are the rule of mixture and the dleadaseries model, repectively. In the rule of
mixture model, also referred to as the parallel ehodach phase is assumed to contribute

independently to the overall conductivity, propomially to its volume fraction (Equation 3).
ke =Kk, [®, +k [P 3)

where kK, .k, are the thermal conductivity of the composite tipt, matrix, respectively, and
®,,®, volume fractions of particles and matrix, respesyi. The parallel model maximizes the
contribution of the conductive phase and implicassumes perfect contact between particles in a
fully percolating network. This model has some velee to the case of continuous fiber

composites in the direction paralle to fibers, beberally results in very large overestimation for

other types of composites.
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On the other hand, the basic series model assumasomact between particles and thus the
contribution of particles is confined to the regiaf matrix embedding the particle. The

conductivity of composites accordingly with theissrmodel is predicted by equation 4.

1
k = 4
R O N @

Ko K,

Most of the experimental results were found to ifalbetween the two models. However, the lower
bound model is usually closer to the experiemetdtd compared to the rule of mixture [55], which
brought to a number of different models derivedrfriie basic series model, generally introducing
some more complex weighted averages on thermaluctindies and volume fractions of particles
and matrix. These so-called second-order modelsidimg equations by Hashin and Shtrikman,
Hamilton and Crosser, Hatta and Taya, Agari, Cheamdy Vachon as well as by Nielsen [55°86,
appear to reasonably fit most of the experimerdgh for composites based on isotropic particles as
well as short fibers and flakes with limited aspetio, up to loadings of about 30% in volume. For
higher loadings, the Nielsen’s model appear to beste rapid increase of thermal conductivity
above 30 vol.%, thanks for the introduction of thaximum packing factor into the fitting equation,
despite the evaluation of maximum packing factaeim composites may present difficulties due to
particle size distribution and particle dispersianthe matrix. However, the basic assumption of
separated particles in the effective medium apgprdacnot valid in principle for highly filled

composites, where contacts are likely to occursibdys leading to thermally conductive patf§.[
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In order to take into account fluctuations in thafrmonductivity in the composites, Zhou et al. [56]
proposed the concept of heat-transfer passagesnomel the conduction in regions where

interparticle distance is low, applying the serresdel to “packed-belt” of conductive particles.

Even though these macroscopic approaches may inéecést from the engineering point of view,
they deliver little or no information about the gioal background of the observed behavior. As an
example, very limited interpretation is given tce thapidly increasing conductivity with filler
content above a certain filler loading (typicallyoae 30 vol.%), or why the experimental results

are so far away from the upper bound conductieign for highly percolated systems.

Attempts to model thermal conductivity taking ind@count the interfacial thermal resistance
between conductive particles and matrix have beparted by several research grolij§3°%°4°

and applied particles with different geometries gomblogies, including aligned continuous fibers,
laminated flat plates, spheres, as well as mistaterllipsoidal particles. In general, these models
provided an improved fit with experimental data t@mramic based composites than models not
accounting for interface thermal resistance. Thapproaches generally assume conductive
particles to be isolated in the matrix and take iatcount the thermal resistance in heat transfer
between conductive particle and matrix, also kn@srKapitza resistance, from the name of the
discoverer of the temperature discontinuity at inetal-liquid interface. A very simple proof of

thermal interfacial resistance is the fact thatexmal conductivity lower than the reference matrix

was experimentally found with some composites d¢oimtg particles with thermal conductivity
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higher than the matrix [61,62]. This phenomenoexplained by the very low efficiency of heat
transfer between particles and matrix, so thahtgker thermal conductivity of the filler cannot be
taken into advantage and the composite behaves dikeollow material, thus reducing its

conductivity compared to the dense reference matrix

1.4 Nanocomposites for thermal conductivity

Recently, nanotechnology has gained much attemigrsearch to develop materials with unique
properties. Nanotechnology can be broadly defireetha creation, processing, characterization and
use of materials, devices, and systems with diro@ssin the range 0.1-100 nm, exhibiting novel or
significantly enhanced physical, chemical, and dgaial properties, functions, phenomena, and
processes due to their nanoscale si%e Nanocomposites, i.e., composites containing efisgd
particles is in the nanometer range, are a sigmfipart of nanotechnology and one of the fastest

growing areas in materials science and engineering.

Polymer based nanocomposites can be obtained badithiéon of nanoscale particles which are
classified into three categories depending on tla@inensions: nanoparticles, nanotubes and
nanolayers. The interest in using nanoscaled dilierpolymer matrices is the potential for unique
properties deriving from the nanoscopic dimensiang inherent extreme aspect ratios of the
nanofillers. Kumar et al.°f] summarized six interrelated characteristics afict@mposites over
conventional micro-composites: (1) low-percolaticthreshold (about 0.1-2 vol.%), (2)

particle-particle correlation (orientation and piosi) arising at low-volume fractions (less than
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0.001), (3) large number density of particles partiple volume (1810° particlespm?®), (4)
extensive interfacial area per volume of parti@8>-10* m*ml), (5) short distances between
particles (10-50 nm at 1-8 vol.%), (6) comparabiee sscales among the rigid nanoparticles

inclusion, distance between patrticles, and thexagian volume of polymer chains.

Different nanoparticles have been used to imprinvezntal conductivity of polymers. As a few
examples, HDPE filled with 7 vol.% nanometer sixpanded graphite has a thermal conductivity
of 1.59 W/mK, twice that of microcomposites (0.78 Wk at the same volume conterff][
Poly(vinyl butyral) (PVB), PS, PMMA and poly(ethyle vinyl alcohol) (PEVA) based
nanocomposites with 24 wt.% boron nitride nanotB&NT) have thermal conductiviies of 1.80,
3.61, 3.16 and 2.50 WFif, respectively {]. Carbon nanofiber was also reported to improwe th
thermal conductivity of polymer composite?,{']. However, the most widely used and studied
nanoparticles for thermal conductivity are certaiohrbon nanotubes (either single wall -SWCNT
or multi wall -MWCNT), which have attracted growingsearch interest. Indeed, CNT couples very
high thermal conductivity with outstanding aspeatia, thus forming percolating network at very

low loadings.

1.4.1 CNT-based nanocomposites preparation methods

As the bulk properties of composite materials #tridepend on the structure formed during the
processing step’{, a brief review on CNT-based composites prepanathethods is given here,

including solution mixing, melt blending, and inuspolymerization. Detailed information may be
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found in reviews on this topid3}"* "5,

Solution Mixing is one of the most commonly used techniques fopaiteg CNT based
polymer—matrix composites. Solution mixing gengrailvolves three major steps: dispersing CNTs
in a suitable solvent, mixing with a polymer sabutj and recovering the composite by precipitating
or casting a film {]. The difficulties in dispersing the pristine CNiFsa solvent by simple stirring,
often require the use ofhigh-power ultrasonicationmake metastable suspensions of CNT or
CNT/polymer mixtures f]. Heat-treated ’f], acid-treated®] or functionalized CNTs®,%22% are
often used to improve the dispersion of CNTs. Maolymer/CNT composites have been
successfully prepared by the solution mixing methiodluding polyacrylonitrile/SWCNT f],
poly(methyl methacrylate)/SWCNT ®f], poly(ethylene oxide)/MWCNT {°], poly(L-lactic

acid)/MWCNT [, chitosan/MWCNT §9. However, the solution mixing approach is limitex

polymers that freely dissolve in solvents suitdhkg also lead to stable suspension of CNTs.

In-situ Polymerization involves dispersion of nanotubes in a monomer Yodd by
polymerization {7. As in solution blending, functionalized CNTs damprove the initial dispersion

of the nanotubes in the liquid (monomer, solvent) eonsequently in the composites. Furthermore,
in-situ polymerization methods enable covalent lgdbetween functionalized nanotubes and the
polymer matrix using various chemical reactiondey examples are mentioned here: composites
of polyimidess MWCNTs were obtained by the reactioh 4,4’-oxydianiline (ODA) and

pyromellitic dianhydride (PMDA) ¥]; composites of polyaniline/MWCNT (acid treatedens
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synthesized by chemical oxidative polymerizatiéfj; [and composites of polypyrrole/MWCNT

were prepared by in-situ inverse microemulsiBhgnd in-situ chemical polymerizatioff].

Melt Blending is a convenient method to produce CNT based nanpasites owing to its cost
effectiveness, fast production and environmentaiebts, being a solvent-free process. Melt
blending uses high temperature and high shear So@ealisperse nanotubes in a thermoplastic
polymer matrix, using conventional equipment fadustrial polymer processing. Compatibilizers
such as end-grafted macromolecules and couplingtegee often used to enhance dispersion of
CNTs [ %%. Melt-blending approach has been reported fothel main polymer types, including
polyolefines (PE, PP), polyamides, polyesters (FEBT and others), polyurethane, polystyrene,
etc. However, compared with solution mixing, madnaling is generally less effective at dispersing
nanotubes in polymers, and limited to lower conadidns due to the high viscosity of the

composites at higher nanotubes loadirifs |

Masterbatches, i.e., thermoplastic polymers coimtgirhigh loading of CNTs (typically 15-20
wt.%), have recently became widely used in the npeeparation of CNT based polymer
nanocomposites. For industrial applications ofrttedt mixing extrusion technique, the masterbatch
dilution seems to be favorable compared to thectliranotube incorporation since it reduces
dispersion difficulties, offers a dust-free envinoent and reduced safety-risk concerns, and easy
handling f”,°%]. The state of a CNT dispersion in the diluted posites is influenced by the state of

the CNT dispersion in the masterbatch€s processing conditions¥] and compatibility between
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the CNTs and polymer matrix '{*]. Instead of the thermal conductivity of CNT based
nanocomposites prepared from CNT masterbatch, hbelagical and electrical properties have

been given considerable attentioff,f3.

1.4.2 General issues on thermal conductivity of CNT-basedanocomposites

CNTs exhibit longitudinal thermal conductivity of80~6,000 W/nK for a single nanotube at
room temperature'}*1°® 16], comparable to diamond and higher than graghid carbon fibers, as
well as aspect ratio usually in the order 189. Based on these two properties, several authors
claimed CNT suitable to obtain a breakthrough iartial conductivity by the formation of a
thermally conductive percolating network, similar électrical conductivity 781910 111].
However, the literature on the thermal conductiatyraditional composites summarized in section

1.3.1 is most often neglected, even though verylairecenario may apply to nanocomposites.

Indeed, the reported experimental results for tlaérmonductivities of CNT/polymer composites
are much lower than the values estimated fromrtresic thermal conductivity of CNTs and the
simple rule of mixing model'}>'*. Very large scatter in the experimental data ais® found;
ranging from a remarkable enhancement of thermadliectivity by a small amount of CNT [111]
to a decrease in the conductivity by CNT loaditig [ evidencing the complexity of the problems
and the difficulties in providing general rules fure thermal conductivity in polymer/CNTs
nanocomposites.

Recent research revealed two main critical isssssaated with the use of CNTs as thermally
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conductive fillers in polymer composite§]: (1) CNTs tend to aggregate into ropes or bundles
when dispersed in polymers due to the strong sitirVan der Waals forces and the inert
graphite-like surface, causing poor dispersion anatking it a challenging task to disperse CNTs
properly to realize their full potential in imprawent of thermal conductivities of composites; (2)
the other is related to interfacial thermal resiseacaused by the phonon mismatch at the interface
of the CNTs and the polymer results in a high fats thermal resistance, leading to severe phonon
scattering at the interface and a drastic reduabiothermal transport properties. In addition, the
thermal transport through CNT network by phononis e strongly hindered by the gaps between
adjacent tubes. The attainment of polymer/CNT namgosites with high thermal conductivity is
challenged to address these two critical issueshanld effective conductive networks for heat

transfer.

This review aims at the identification and discassef the several parameters affecting the thermal
conductivity of CNT-based polymer composites. Tihermal conductivity of CNTs is first
reviewed on the base of the dependence of therovaductivity of nanotubes on the atomic
structure, the tube size, the morphology, the defiee purification and the functionalization. Then
the thermal conductivity of polymer/CNT nanocompesiis discussed, summarizing factors such

as interfacial resistance, dispersion and alignmoe@iNTs and polymer crystallization.
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2 Thermal Conductivity of CNTs

Since their first observation nearly two decades lag lijima ['*9, CNTs have been the focus of
considerable research efforts. Numerous investigat@mve reported remarkable physical and
mechanical properties for this new form of carbamong which the thermal conductivity of CNTs
has received considerable attention 1f, Recent measurements of the conductivity of @lsin
CNTs confirmed conductivities of about 3,000 WKmfor multi-walled carbon nanotubes
(MWCNTSs) [104] and above 2,000 Wikhfor single-walled carbon nanotubes (SWCNTSs) [105]
However, the direct and quantitative measurementhefmal transport properties of individual
nanotube remains challenging, due to technologdifficulties associated with nano-scale
experimental measurement$?[. For this reason, the thermal conductivity of GN3 mostly based
on the theoretical simulations and calculationsnfiadirect experiments11?°*#123 " providing

significantly scattered results, usually in thegabetween 2,000 to 6,000 W/m-K.

Similar to other non-metallic materials, the tram$pof thermal energy in CNTs is assumed to
occur via a phonon conduction mechanism. The phaoouction in nanotubes is influenced by
several processes such as the number of phonme aetides, the boundary surface scattering, the
length of the free path for the phonons and inelattmklapp-scattering (an anharmonic
phonon-phonon or electron-phonon scattering prydéss-?4. The thermal conductivity of CNTs
depends on atomic arrangement (i.e., how the sloéegsaphite are “rolled”), the diameter and
length of the tubes, the number of structural dsfaad the morphology, as well as on the presence
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of impurities }%°,'2°2%. The factors affecting CNTs thermal conductivdire discussed in detail in

this section.

2.1 Structure and Morphology

2.1.1 Nanotube Morphology

There are two main kinds of nanotubes: single-wlatarbon nanotubes (SWCNTSs), individual
cylinders 1-2 nm in diameter, consisting of a stngllled graphene sheet, and multi-walled carbon
nanotubes (MWCNTSs), a “Russian doll” structure d¢iasng several concentric graphene
cylinders, with weak Van der Waals forces bindihg tubes togethet¥]. Thus, SWCNTs are
significantly smaller in diameter compared to MWQGNdnd the thermal properties may differ

significantly.

The thermal conductivity of a single SWCNT was ee#td by Yu et al, using a suspended
microdevice on which a single tube was grown bymbal vapor deposition method [105]. Despite
some uncertainty on the actual CNT diameter, thegotivity was evaluated to be higher than
2,000 W/m-K, and to decrease with decreasing testyrer. Due to aggregation of SWCNTSs in
bundles 29, the thermal conductivity of individual SWCNT d@sten measured on SWCNT mats.
For example, Hone et al*f] estimated the room temperature thermal condugtisi SWCNT to

be in the range of 1,750 and 5,800 WKmbased on the measured thermal conductivity of
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high-purity mats of tangled nanotube bundles,. H@redue to the high thermal contact resistance
between tubes (see section 3.1.2) , the experiinezgalts obtained on the SWCNT mats are
usually two order of magnitude lower than for senGINTs (e.g., about 35 W/Kifor dense-packed

SWCNT mat accordingly to Hone et a°Y).

Simulation studies usually report thermal condutiéis in the range of 2,800~6,000 WHKnfor
SWCNTSs at room temperatur€’]. Berber et al. £ evaluated the temperature dependence of the
thermal conductivity of an isolated SWCNT by comibg equilibrium and non-equilibrium
molecular dynamics simulations. Their results iatkd room temperature conductivity value of
6,600 W/mK, increasing for lower temperature, with a maximafr87,000 W/rrK at 100 K, this
trend being in disagreement the experiemental résuYu et al reported above. Osman et 4f] [
also found a maximum in the thermal conductivity VCNTs over a temperature range of
100-500 K by molecular dynamics simulations, highemperatures corresponding to larger
diameters, before falling off at higher temperasuru et al. T used the complete phonon
dispersion relations to calculate the temperateeddence of thermal conductivity of SWCNT,

finding a similar trend and a conductivity valuedd® W/mK at 300 K.

MWCNTSs consists of nested graphene cylinders ctgaaranged around a central hollow core
with interlayer separations of about 0.34 nm, iatlie of the interplane spacing of graphite. The
temperature dependence of thermal conductivity W®MNTs was discussed by Small et [

reporting monotonically decreasing conductivitydvelroom temperature. Kim et al. [104] reported
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the room temperature thermal conductivity of oved08 W/mK for an isolated MWCNT,
determined using a suspended microdevice. Otheerements on isolated MWCNTs showed
values of themal conductivity between 200 and 3 00fK at room temperaturé¥]. The large
difference between single-tube and bulk measuresn@rgually using films or macroscopic mat
samples) was attributed to the numerous and higfmiél contact resistance of MWCNTET. The
thermal conductivities of MWCNT films were reporteéd be about 15 W/K by a pulsed

photothermal reflectance techniqd&and 25 W/rK by a self-heating@ method {*9.

In a comparison between theoretical propertiesV8€SITs and MWCNTs Liu et al*{}] reported a
non-contact Raman spectra shift method, by whiah ieasured thermal conductivity of an
individual SWCNT and a MWCNT were 2,400 Wknand 1,400 W/nK, respectively. The lower
thermal conductivity of MWCNT was attributed to twactors: (i) the assumption that thermal
transport is mainly by the outermost wall, and ffi¢ occurrence of intertube Umklapp scattering
processes. The SWCNTs also show a high number arigrhvibrational modes from theoretical
calculations, and a relatively low defect densipmpared to MWCNT, leading to a potentially

higher thermal conductivity {24344

2.1.2 Atomic Structure

The atomic structure of nanotubes is describeénmg of the tube chirality, or helicity, defined by

the chiral vector ¢, =na;+ma,) and the chiral angle, see Fig. 1&][ The two limiting cases for
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which the chiral angle is at 0° and 30° are refetoeas ziz-zag (0°) and armchair (30°) based en th
geometry of the carbon bonds around the circuméerenthe nanotube. The difference in armchair
and zig-zag nanotube structures is shown in FiqribFig. 1c. Thus, the structure of CNT can be

specified by §, m), that is arm chair (n = m), zigzag (n = 0 or r@)7or chiral (all others).

Since the mechanism of heat conduction by phonomdectrons depends profoundly on the band
gaps of materials [1287, the heat transfer mechanism of CNTs is foundepend strongly on the
chirality, which determines the size of their bagaps and electronic properti€d’]. The largest
band gap (on the order of 1.5 eV) is found in nabes with §,m) chiral indices defining the chiral
vector satisfying the conditiom+4m| #3 p, wherep is an integer{*¥]. For other types of nanotubes,
the band gap is considerably smaller in the casero€hair nanotubes € m). Thus, the electronic
contribution to the thermal conductivity will begsificant in metallic CNTs with a small band gap
[**9. On the other hand, thermal conductivity of chi&NT is mainly governed by the phonon

component Y.

The phonon thermal conductivity of a CNT was fouaddepend on its chirality by Zhang et al.
[**Y. Using the homogeneous non-equilibrium Green—Kuiethod based on the Brenner potential,
the temperature dependences of the thermal condissiof (11, 11), (20, 0), (10, 13) nanotubes
with nearly equal radii were calculated. As showrfig. 2, the thermal conductivities of these three

types of nanotube seem to have similar temperatependences. In the range from 100 to 400 K,

the conductivity of the (11, 11) nanotube was lotiran that of the (20, 0) nanotube, while the (10,
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13) nanotube showed lower values of thermal comdtyctompared with the two other types.

Unlike phonon thermal conductivity, electron thefroanductivity of CNTs for metallic CNTs is
seldom reported. An additional contribution froneattonic states to the thermal conductance of
metallic CNTs may be profound even though heatsjrart in CNT is thought to be dominated by
phonons. For instance, based on a solution to tiezmBann kinetic equation Mensah et &
predicted the electron thermal conductivity of #ahSWCNT exceed 200,000 W/khat about 80

K and 41,000 W/nK at about 104 K, much higher than phonon therroaldactivity. Despite the
decrease of thermal conductivity above 100 K, twe temperature value of about 11,000 VWm
was still very high. However, since only a sma#ichion of the crystalline ropes of CNTs in the
experiment will be metallic, the thermal conducaicdominated by phonons rather than electrons

[1309.

2.1.3 Topological Defects

Whereas theoretical calculations are typically @enied on perfect structures, it is nearly
impossible to obtain perfect, defect-free CNT sa®pln the process of the growth of CNTs, a
variety of structural defects inevitably occur, of which may have a pronounced impact on the
properties of the CNTs. Defining a perfect nanottdoée a cylindrical graphene sheet composed
only of hexagons having a minimum of defects attips to form a closed seamless structure,

Ebbesen and Takada''] classified the defects into three groups: topisialg defects,
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rehybridization defects, incomplete bonding and epothdefects. Topological defects like
non-hexagonal carbon rings or vacancy-related tefean form during the nanotube growth
process or be introduced after synthesis, for el@rp chemical purification or irradiation by
charged particles'{’. The formation mechanism of topological defects tbeen theroretically

investigated, especially for SWCN¥{ 7.

The Stone-Wales (SW) defect is one of the most rtapb topological defects in CNTs. A SW
defect comes from the 90° rotation of a C—C boasdyliting in the transformation of four hexagons
into two pentagons and two heptagons, i.e., a dipohsisting of two pentagon-heptagon pairs in a
hexagonal network of CNT*$'°°9. A pentagon-heptagon pair introduced on a SWCH c

change the chirality of the tube and thereby forseamless junctiortTj.

Vacancies in SWCNTs can be engendered by the estdfasarbon atoms in CNTs under electron
or ion irradiation °2'3. The local structures around single vacancieshmmeconstructed{J.
Molecular dynamics simulations showed that surfiemnstruction and size reduction occurred

through dangling bond saturation, forming non-hexed rings and 5-7 defects in the lattic][

Compared with SWCNT, theoretical prediction of MWTMNefects appears to be more difficult
and is seldom reported.However, a highly complesuctire and a variety of MWCNT
morphologies have been observed by high-resolutaorsmission electron microscopy (HRTEM).
Lavin et al. {°9 delivered a detailed description of the complésucture of MWCNT with

numerous defects, such as slip-planes, irregwar lspacings and internal caps.
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About 5% of the carbon atoms were located at defeditest®’]. Such a significant number of
defect sites on the graphene walls of the CNTs mart significant influence on the thermal
conductivity. Yamamoto and WatanaBé”[ investigated the effects of vacancies and SWaisfe
by the non-equilibrium Green’s Function technigBg.comparing the thermal conductance ratio
Kvacswkp Of CNTs with vacancy or SW defect and perfect CNdsdefect-dependent thermal
conductance of CNTs was revealed (Fig. 3). Thederi phonons were scattered more strongly by
the vacancies than by the SW defects and the mfki®f defect scattering in thin CNTs on the
thermal conductance was more significant than imahick CNTs. Che et al.*{] also found a
decreasing thermal conductivity with increasingedéefconcentration, and a stronger scattering

effect of vacancy than SW defects.

Branched or regularly coiled CNTs can form when-heragonal carbon rings are incorporated
into the nanotube structure during the growth psscE’l. The introduction of the junction on
CNTs usually gives rise to an increase of the ldbhatmal resistance, and reduces the thermal
conductivity due to lattice defects in the formmafn-hexagonal carbon rings at the junctiofi]

For example, the thermal conductivity of X-shapeacfions decreased by ~20-80% compared with

straight nanotubes ..

2.2 Size Parameters

The phonon mean free paths are thought to bevelationg in nanotubes: 500nm for a MWCNT
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and even longer for a SWCNT. [105,188!"4. Taking this into account, structure size of CN&Ts

of particular importance. It is well known that CNare characterized by a large aspect ratio and a
huge surface area. Diameter and length are twpasmeters to describe CNTs and directly affect
the thermal conductivity of both CNTs and compasit®ntaining CNTs. The dependence of

thermal conductivity on these two parameters isereed in this section.

2.2.1 Diameter

Cao et al. " reported that theoretically, the thermal conduittishould be higher for SWCNTs
with smaller diameters. According to their res\{kgy. 4), the thermal conductivity at 300 K was
approximately inversely proportional to the diameté SWCNT. Fuijii et al. ' measured the
thermal conductivity of a single MWCNT using a seisged sample-attached T-type nanosensor.
The thermal conductivity of MWCNT at room temperatincreased as its diameter decreased, i.e.,
the thermal conductivity increased as the numbewalls decreased, varying from about 500

W/m-K for an outer diameter of 28 nm to 2069 W/nfeKa 10nm diameter.

2.2.2 Length

Simulation results predict an effect of CNT length its intrinsic thermal conductivity. By the
molecular dynamics method, the thermal conductieitytSWCNTs with chiral indices (5,5) and
(10,10) was found to increase with the length eftitbe from 6 to 404 nm (Fig. 5Y {]. The length
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dependence of the thermal conductivity at room ®naipre in Fig.6 was also revealed for
SWCNTs with different chiral indices: (5, 5), (1), (7, 7), (10, 10), (17, 0), (15, 15) by using
reverse non-equilibrium molecular dynamics simolagi f"%. For length parameters) from 5 to
350 nm, the calculated thermal conductivity inceebwith increasing tube length and followetda
law, with o values between 0.54 (100 nm < L < 350 nm) and (L7 25 nm). These phenomena
were explained by the variable ratio between thenph mean free path and the CNT lendtf [
Based on these results, the thermal conductivitgxigected to become constant when the tube

length is much longer than the mean free pathegtiergy-carrying phonons.

2.3 Purification and Graphitization

Although some new methods are devised to synthdsgte quality CNTs, presently CNTs are
mainly produced by three techniques: arc dischalgser ablation, and chemical vapor
decomposition >*84. The raw CNT materials produced by these metradsfar from perfect,

and contain numerous defects and impurities whigbair the thermal conductivities of the CNTs
['8289 Thus, the treatment of raw CNTs materials, idisig purification and graphitization are
widely investigated'f¥. In this section, the purification methods andmiitization procedures for

CNTs will be briefly reviewed.
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2.3.1 Purification

The impurities, residual metals from metal catalysidely used in CNT productiont®f] and
carbonaceuous impurities such as amorphous cagpaphitic particles, carbon shells, fullerenes
and multi-shell carbon nanocapsulé¥][ cause a serious impediment in most CNT appbaati
[ 9 To get advanced composite materials (e.qg., gthertoughness, conductivity}®f,'%9, the
impurities have to be removed by further physicad ahemical processing. Purification methods
generally involving separation and elimination @eses can be categorized into three major

methods: physical separation, gas-phase oxidatiddiguid phase oxidatiort{}.

Physical separations are often based on the uS&EINT aqueous dispersions with a surfactant,
such as sodium dodecyl sulphate (SDS), with separaachieved by sonication, filtration,
centrifugation, or chromatographic method$?{%]. Physical methods are not very efficient
because they leave some amorphous carbon pamigdlenalti-shell nanocapsules in CNT samples
and it is difficult to completely dissolve metalcapsulated within the carbonaceous tips of the
nanotubes 'f¥. Morevover, sonicating CNTs for a long time artdhigh frequency can cause

damage, breaking the nanotubes into shorter fragnffér.

Gas-phase oxidation is carried out by thermal dmge&NTs in the presence of an oxidizing gas
(02, Chy, or their mixtures) at 300—600°¢]. The oxidative treatment of raw CNTSs is effectiue

removing non-nanotube carbon from bundles, and@smotes the removal of the carbon coating
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from metal catalysts. Gas-phase oxidation methadoeacompromised by poor homogeneity of the
gas/solid mixture and low efficiency in removingaghitic impurities and metallic catalytic

impurities 7.

Liquid-phase oxidation is generally carried outhnécid solutions such as HN®@r mixtures of
H.SOWHNO3 or H,SO/KMnO4 [**¥.  In removing metals and carbon impuritie, inwief the
resistance to oxidation, strong oxidants such &BdKMnO, are used with MWCNTSs, and nitric
acid solutions are used with SWCNTEY. The treated nanotubes are thought to bear cglibox
acid groups at the tube ends, and in additionjgbatestruction of the nanotube structure is also

possible {%9.

Combined purifications, generally made up of saimca acid treatment, oxidation, heat treatment,
etc., are generally found efficient for eliminatimpst impurities and have been widely investigated
[2°120% By multi purification procedure, CNTs with highurity may be obtained and most
importantly, the risk of structure destruction ésluced $°32°42%9. Unfortunately, most of present
purification techniques result not only in the ehation of impurities, but also in structure

alteration or even destructiof?{?°’?°¥, directly affecting the intrinsic CNT conductiyi

2.3.2 Graphitization

As described in section 2.1.3, CNTs always contstiuctural defects, such as pentagons,
pentagon—heptagon pairs, vacancies, interstitetis,, which considerably affect their thermal
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transport properties. Thermal treatments are ne&aledmove these imperfections, and possibly
obtain a regular and defect-free graphitic strieturhese treatments are often referred as to
graphitization processes [14]. The graphitizatiehdvior of CNTs depends on their microstructure
and morphology. Complex morphological and strudtiransformations may occur at different

temperatures.

For SWCNTSs, graphitization may result in the trangfation to SWCNTs with larger diameter or
MWCNTSs, depending on the temperature. For examidietenier el al. °9 reported the first
transformation due to SWCNT coalescence appeartinp8@0°C, with an increase of the tube
diameters from 2 to 4 nm, and the second one af80°C due to the formation of MWCNTSs
having at first two to three carbon layers, theschéng six layers. The temperature corresponding
to the structural transformation differs to soméeak for CNTs synthesized by different methods
[#'9. The transform process is also observed duringt ieeatment of double walled CNTs
(DWCNTSs). At temperatures higher than 2100°C, tlddferent types of structures were reported:
(a) large-diameter DWCNTSs; (b) MWCNTs, and (c) flakarbons . For MWCNTSs, the
graphitization procedure annealed at temperatuedsden 1600 and 3000°C was found to reduce
the wall defects?!?. The results of graphitization are: (a) an ineee@ the graphitic perfection of
the annealed MWCNTSs, (b) removal of metallic compasy (c) removal of microstructural defects,

(d) remain of gross defects, such as side graftinés.

Typically, the ratio of intensities between the DdaG bands (Jlg) of CNTs in Raman
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spectroscopy is taken as a measure of defectotutzes 1. An example of structure ordering is
evidenced in Fig. showing Raman spectra of disordered MWCNTs beforeaiter treatment at
2800°C for 30 min in a high-purity argon atmosphifd. The structural transformation from a
disordered CNT to a highly ordered MWCNT and alke healing of structural defects upon
graphitization were confirmed by the upshift of téand, an intensified 2D band (overtone of the

D band), and a reducegd/ll; ratio from 0.98 to 0.23.

Although high temperature heat treatment can prentio¢ graphitic perfection and ordering of
CNTs, the faceted angles, junctions, kinks or ottress defects in graphitized CNTs are still
detrimental to the thermal conductivities of CN'Being aware of the defects developed and
surviving the graphitization process of CNTET[ it seems essential to synthesize raw CNTs with

fewer defects and higher crystallinity [188].

2.4 Functionalization of CNTs

The functionaliztion of CNTs can be obtained byalent and non-covalent methods with different
substances, such as chemical group§®f¥, surfactants $°%%9, polymers §?%2%] and metals
[?%24. The main trends and recent achievements in CiNéfnistry with special emphasis on the

functionalization of CNTs were reviewed by Raké¥][and Meng et al. 9.

Local strain in CNTs, which arises from pyramidatisn and misalignment of theorbitals of the

spf-hybridized carbon atoms, makes nanotubes mordiveatan a flat graphene sheet, thereby
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paving the way to covalently attach chemical spetienanotubes [149]. Defects of CNTs at the
tube ends or on the sidewalls are important indinealent chemistry of the tubes. Hirscdi’]
described the typical defects of SWCNT and its fiomalization methods detailedly.
Defects-favored functionalization of MWCNT is algossible [73?%??% and local oxidation of the
graphene sheet is needed to obtain significanttifumalization yields [200]. Depending on the
oxidation degree of the CNTs, an oxidative treatmen usually needed prior to actual
functionalization, usually done in liquid phase dyd treatment or gas phase oxidation, similar to

the processes described for CNT purification (setian 2.3.1).

Covalent bonds can benefit phonon transferring éetwthe nanotubes and the polymer matrix
[2%°%Y However, even when extensive damaging of CNilicstire is avoided, a notable drawback
of covalent functionalization is the disruption tifie extendedr conjugation in nanotubes,
combined with the conversion of’sparbons to spby hybridization 3223324239, Although the
impact of disruptedt conjugation is limited for mechanical propertiélse impact on thermal
conductivity is expected to be profound becauseh emmvalent functionalization site scatters
electrons and phonon&®{.Shenogin et al. [231] found a significant droptbérmal conductivity
with increasing degree of functionalization wheralemting the effect of Spdefect on thermal
conducitivty of CNT by equilibrium molecular dynaesi (MD) simulations (see Fig. 8). However,

once about 1% of carbon atoms are functionalizaethér increase in defect density does not result

in lowering thermal conductivity.
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Non-covalent functionalization is an alternativethosl for tuning the interfacial properties of
nanotubes®’]. Such functionalization is realized by adsorbitifferent moieties onto SWCNTS to
“wrap” the nanotubes*{¥]. The non-covalent approach includes surfactandification of CNT,
polymer wrapping or absorption (with the polymersnegrated in-situ) by the non-covalent
interaction between thesystem of CNT and the functional group comprigimg polymer $3°249.

The advantage of non-covalent attachment is ttaiQNT structure is not damaged so that their
properties remain. The main disadvantage of nomleow attachment is that the forces between the
wrapping molecules and the CNT may be very weaksipty leading to high interfacial thermal

resistance?,%*9.

3 Thermal Conductivity of Polymer/CNTs Nanocomposites

Most of the published results present a disappwnthessage, indicating that the enhancement in
the thermal conductivity of CNT/polymer compositeded to match the theoretical prediction.
Also, the concentration dependence of the thermadlactivity of polymer/CNT composites does

not reveal percolation behavior in the vicinityedéctrical percolation concentratioft.

An summary of thermal conductivity performances @XT-based nanocomposites reported in
literature is given in Fig. 9. It is clearly obsable that the experimental results are much claser
the lower bound conductivity model rather thanhe tipper bound rule of mixing: this reflecting

exactly the behavior of traditional microcomposites®e section 1.3.2). This appears to be
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disappointing, considering that the outstandingeespatio easily leads to a percolation network in

the polymer matrix.

Attempts to extend the classical composites mogetm nanocomposites were reported and
recently reviewed elsewheré*j. In particular, the Maxwell-Garnett effective nieth approach
was applied by Nan et al. [122], resulting in aerm@stimated prediction, based on an assumed CNT
thermal conductivity. Later, this model was refina#fing into account the effective aspect ratio,
which is much lower than the assumed value forigttaCNT, owing to bending of CNT in the
matrix [?*. The effect of interfacial resistance has beetiressed by several authof&°f*,113],

as discussed in details in the following. Howewagrious limitations apply to these models,
addressing only low amount of CNT, extremely higNTClength and no or negligible contact
between CNTSs, which is in clear contrast with thedlsknown percolation capability of CNT even
at low concentration. An attempt to apply the LelNiglsen model to thermal conductivity results
for composites containing up to 49 vol.% SWCNT wesorted by Xu et al?{¥, obtaining a large
conductrivity overestimation, compared with the exymental results. However, the values for
particle geometry and orientation (A) and maximuackng fraction parameters are not obvious
for nanocomposites, which may lead to significagnidtions. Guthy et al. [106] also applied the
Nielsen model to PMMA/SWCNT, confirming a very higlensitivity of the prediction to the

geometrical parameter A defined above.

Based on this overview, it appears that the prapgoitation of the thermal conductivity and
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aspect ratio of CNTs requires a very careful cdntfothe micro- and nano-structure of the
composite. Several parameters are recognized o gleole in the conductivity performanace,
including interfacial resistance, CNT distributiatispersion and alignment. This remainder of this
section reviews the influence of these parametarshermal conductivity, based on the present
state of the art. However, these factors are dfterrelated and some difficulties apply to their

independent discussion.

3.1 Effect of interfaces on thermal transfer

In a polymer nanocomposite, the large surface afdhe nanoparticles maximizes the extent of
polymer/particle interfacial area. Furthermore thie case of percolating network, the number of
contact points between particles increases withedsmg particle size. It is therefore reasonable t

expect a significant role of the interfaces in thak conductivity of nanocomposites.

A significant amount of literature is reported dmetthermal resistance at the solid-liquid or
solid-solid interface, also referred to as Kapitegsistance from the name of the discoverer of the
temperature discontinuity at the metal-liquid ifaee. This effect is assumed to apply at the
interface between CNT and polymer matrix and pdgsilso in direct contact between CNT. In this
paper, we refer to CNT-polymer and CNT-CNT inteelady the terms interfacial resistance and
contact resistance, respectively. An optimizatibrthe polymer-CNT and CNT-CNT interfaces is

certainly one of the key issues for the succesbtrimal transport of CNT/polymer composites.
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3.1.1 Interfacial Resistance

The interfacial thermal resistance represents aidbato the heat flow associated with the
differences in the phonon spectra of the two phé&dgsending on atomic arrangement and density)
and possible weak contact at the interface [248grfacial thermal resistance between CNT and
polymer was quantified both experimentally and te&oally [246,242] in the order of magnidue of
10® m?- K/W, which correspond to the resistance of a layflepolymer with thickness in the ten

nanometer range.

From a theoretical point of view, the scatteringphbnons in composite materials is mainly due to
the existence of an interfacial thermal barriemnfracoustic mismatch. In a simplified model, the
transmission of a phonon between two phases depamdbe existence of common vibration

frequencies for the two phases. Thus, it was swggptisat only low frequency phonon modes of

CNTs are effective when CNTSs interact with a matniy via weak dispersion forces [246].

Another source of interfacial resistance is theerfgct physical contact between CNT and matrix,
which primarily depends on surface wettability. Tiecking of octane molecules around a CNT
was studied by molecular dynamics simulation, shgvé strong peak in octane density about 4 A
away of the tube wall [246]. A similar situation @éxpected with polymeric molecules, in which
arrangements may be more complicated, dependingclmin conformation and rigidity

[241,243,244]. In addition, interface defects caiseafrom internal stresses due to mismatch in
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particle and matrix thermal expansion coefficiefitsthe worst cases, gaseous products might also

be present at the interface.

There are some experimental observations that ateliwery good physical contact between
polymers and CNTs. Strong interfacial interactidmesween CNT and polymer are suggested by
TEM results of PE/MWCNT composites shown in Fig., Wthere MWCNTs were uniformly
dispersed as single nanotubes and PE seemed toromedp around the MWCNT{]. MWCNTs

well wetted in PP matrix have also been reportedi [

A significant number of modeling papers addressedrole of CNT interface thermal resistance.
Nan et al. [113] first applied the effective mediuapproach previously developed for
microcomposites to CNT nanocomposites, [61] inglgdinterfacial resistance. They reported a
decrease of about one order of magnitude in theabveomposite calculated conductivity as the
thermal resistance increased from zero (perfeetfmte) to 8- 18 m?- K/W (Fig. 11). This model,
including interfacial resistance, was also foundapproximate experimental data for a nanotube
suspension in oil, whereas the equivalent modelrasg) perfect interfaces clearly overestimates
the conductivity value (Fig. 12) [113]. Later, Haggnueller et al.’fY] applied the same model to
SWCNT/HDPE nanocomposites for CNT volume fractidh0é and with an interfacial resistance
of 1-10° m? K/W. However, the model was found to strongly wedémate the conductivity at

higher volume fractions.
Similar conclusions on the importance of interfacesistance in CNT nanocomposites were also
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reported by Xue®?, Ju and Li [241], Gao et afT] and by Singh et al*{¥, based on purely
theoretical work or compared with CNT suspensionéiguids. Duong et al.?{”] also reported a
computational model based on a Monte Carlo simarlatvalid for composites in which particles
are not in contact with each other, and found tinlgood agreement with considered experimental

results in polymer composites containing up to WENT loading.

The modeling literature in the preceding providems information on the phenomenology of
interfacial thermal resistance, but does not ds¢he relationship between chemical structure and
overall thermal performance. The effect of linegdiocarbon chains on functionalized CNTs on
the thermal conductivity of poly(ethylene vinyl &) nanocomposites was studied by Clancy et
al. using a multi-scale modeling approach (Fig. [£%]. The results predicted that grafting linear
hydrocarbon chains to the surface of a SWCNT withatent chemical bonds should result in an
increase in the thermal conductivity of these nanguosites due to the decrease in the interfacial
thermal resistance between the SWCNT and the swiiog polymer matrix upon chemical
functionalization. Shenogin et al. [231], usingssli@al molecular dynamics simulations, also found
the interfacial resistance reduced by more thagethimes when an octane molecule was attached

to one out of 15 tube carbon atoms (Fig. 14).

The arguments reported above clearly evidence dhe of interfacial resistance on the heat
exchange between CNT and surrounding polymer, lutquestion remains as to how important

this mechanism is in the objective of producinghlygconductive composites based on CNTs. The
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interfacial thermal resistance is usually addressed factor explaining the deviation from models
derived from the basic parallel model (see alsméoarsection 1.3.1). Thus, in a best case of perfect
contact, the composite exhibits a conductivity, ahhis still not satisfactory. Good thermal contact
(i.e., low thermal resistance) between nanoparteid polymer can in principle be obtained by
close molecular contact and correspond to a relgtivigh efficiency in transferring thermal energy
from CNT to the polymer. However, due to the vanw Imean free path for phonons in the polymer
(a few angstroms) [2] compared to the mean fredr mat CNTs (hundreds of nanometers)
[138,173,174], the theoretical scenario of perfedispersed CNT having no contact with each
other and exchanging heat with the surrounding imames not appear to be convenient when
aiming at efficient heat conduction. Indeed, pref¢ial conduction of thermal energy along
particles forming a percolating network is the badea behind the use of highly conductive and

high aspect ratio nanoparticles such as CNTSs.

Chen et al. ] proposed that resistance along the lateral sesfa¢ CNTs could not be a major
factor, whereas the effective composite condugtivitay vary significantly depending on the
thermal resistance at the ends of CNTs. In thizenent scenario, heat would be transported along
the CNTs, taking advantage of their high aspecb,rand exchanged at the nanotube tip, with
efficiency depending on the local interfacial remice with the matrix. In this case, the
functionalization of CNT sidewalls to reduce theenfacial resistance would not be necessary.

Moreover, surface functionalization may even berigental for CNT conductivity, as strong
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coupling of CNT and polymer chains may lead to dagpof phonon or scattering at the
boundaries, reducing phonon speed and/or the mreanpath, thus limiting the intrinsic thermal
conductivity of the CNT. Unfortunately, experimdntasults reported do not provide a general
trend for composite conductivity vs. chemical iatgion at the interface. Indeed, either improved
[258] or worsened [259] thermal conductivity perf@ances are reported for composites based on

organically functionalized CNT, compared to pristones.

The effect of CNT coupling with the matrix was agdufor different types of CNTs, generally
assuming that MWCNTs may be less sensitive to petytoupling, thanks to the internal layer that
is not in direct contact with polymer. However, sorauthors reported the heat conduction

contribution of inner walls of MWCNT to be neglidgb{*®9.

Based on the facts discussed in this section, tfeete of interfacial resistance appear to be
complex, and the advisability of maximizing the heechange efficiency between CNT and matrix
will also depend on the presence of other posditdat exchange mechanisms, such as the

CNT-CNT interactions discussed in the followingtsat

3.1.2 Contact Resistance

It is well known that CNT polymer nanocompositesilgaform percolating network at very low
concentration, as evidenced by electrical conditgtabove the percolation threshold. This fact is
usually taken as a proof that CNTs are in contatht wach other. However, the features of these
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CNT-CNT contacts are mostly unknown, especiallterms of thermal conduction.

Even though no rapid increase was observed irérenal conductivity at the percolation threshold,
the percolation model was also applied to thermabactivity of CNT-based nanocomposites and
suspensions. Foygel et &°] applied Monte Carlo simulations for classicalqmation in a model

to estimate parameters for thermal conductivitepkation, based on the equation 5.
k(®;a)=k,[® -, (a)] (5)

Where k is the thermal conductivityk,is a pre-exponential factor that takes into account
conductivity of nanotubes and of their contactdhweiach other,®is the volume fraction,®_is the
critical volume fraction for percolationais the aspect ratio and is a factor accounting for the
percolating network characteristics. CalculatiaanirCNT suspension experimental data ledko

in the range between 64 and 137 W/m-K, this vadypeesenting the effective conductivity of the
CNT network. This value is obviously much lowernthiaoth the theoretical and measured CNT
conductivities reported above in this paper and thet is related to the contact resistance between
CNTs in the network. Based on thHe calculation, the authors also estimated the valuthe
network resistance (including the thermal resistaoicthe nanotube and the contact between the

nanotubes) to be in the range of 400 K/W.

Bonnet et al. 13 also reported that the enhancement in thermatlwctivity is quantified by
percolation model and calculated a thermal condiigtdf SWCNT network of ~55 W/m- K, which
Is consistent with results discussed above.
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Haggenmueller et al [251] applied the percolationdet to SWCNT/HDPE nanocomposites,
showing that the percolation model fits experimed#da up to CNT loading of 20 vol.%, while the
effective medium approach by Nan et al only fitadap to 6 vol.% (Fig. 15). Improved data fits
with percolation model compared with an effectivediim approach at high CNT loading was also

reported by Kumar et af ).

Further evidence of low efficiency in thermal cartthetween CNTs has been reported by other
authors. Hone et al?Y] reported the thermal conductivity of SWCNT frearsling networks,
showing much higher thermal conductivity from 104@0 K in the alignment direction compared
to that for un-aligned SWCNT as illustrated in Fits. At room temperature, the thermal
conductivity of aligned SWCNT network was about 200mK for the aligned direction and only
about 30 W/nK in the unaligned one. This strong effect of otaion may be related to the lower
number of contact points when CNT are orientedalthdo their high aspect ratio, but there might

also have an effect on the contact efficiencyeimtof CNT-CNT overlap.

Similar results were reported by Gonnet et af|[for magnetically aligned buckypapers (a
preformed nanotube network or nanotube mat), wkldbwed much higher thermal conductivity
along the alignment direction compared to the pedffpeilar direction or the unoriented buckypaper
(see Fig. 17). The thermal conductivity of thedam buckypaper epoxy composites was lower
than both parallel and perpendicular nanocompqsteggesting that reduced contact resistance for

the oriented buckypaper is retained in the nanocsitgs.
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The contact between CNTs was modeled by Shenogeld247], who concluded that heat flow by
CNT-CNT direct contact is very ineffective becaudethe weak Van der Waals forces binding
CNTs, resulting in a significant thermal resistanaad because of the small contact area. The
authors proposed an explanation for the differencelectrical vs thermal behavior based on the
very different CNT/polymer conductivity ratio forhérmal (about 1% and for electrical
conductivity (in the range of 16-10'%). With this relatively low thermal conductivity tia, the
dominant channel for heat flow was proposed to lwevdhe matrix, rather than the percolating

network.

The contact resistance between CNTs was modelethbgg and Lukes (Fig. 18), showing clear

reduction in tube-tube resistance with longer Cldiger overlap and smaller spacifff]

Improvement in CNT-CNT contact is therefore a migstobtain a more efficient heat transfer
between CNTs?f’]. The resistance to heat transfer at the inter-@hifitact and the total contact
area are crucial in polymer nanocomposites, gihan the low thermal conductivity of the matrix
makes CNT-CNT heat exchange through the polymerixnatvery low efficiency process. Both
dispersion and preferential orientation of CNT stly affect the total contact area in a polymer
nanocomposite: as a first approximation, the mggregated and oriented are the CNT, the higher
the thermal contact they can exhibit. Randomly elispd nanotubes in polymer composites are
difficult to provide proper pathways for phononnsgort, as the point interconnections in the

random nanotubes network pose severe limitatioreffective phonon transfer. In contrast,
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interconnections formed by alignment are able tiddba two-dimensional structure of the CNT
network and extensive tube-tube overlap of indigidtubes, which are desirable features for

effective heat transport from one nanotube to thero

Functionalization of carbon nanotubes may in pglecbe oriented to reduce the thermal contact
resistance between adjacent CNTs, despite littll Wwas been done so far on this way. In particular,
interactions stronger than Van der Waals forcesaaseimed to be beneficial for phonon transfer
from one tube to another. CNTs decorated with sislewed slightly improved performance in

epoxy resin compared to reference CNTs [223], pbsdue to reduced contact resistance.

The use of two or more fillers with different shapmay also be beneficial in term of particle
contact surface. A synergistic effect between gtepmanoplatelets (GNPs) and SWCNTs in the
enhancement of the thermal conductivity of epoxyngposites was reported by Yu et al.
[2°9,ascribed to the formation of a more efficient quéating hybrid CNT/GNP network with

significantly reduced thermal contact resistanail&r results were obtained for PP composites, in
which thermal conductivity is also synergisticadighanced by combining CNTs with carbon black

and synthetic graphité®,?"9.

3.2 Dispersion

Dispersion, i.e., the separation of single nanagas, is one of the critical issues with regardhe

processing of polymer/CNT composites due to thellssime and high aspect ratio, leading to the
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formation of CNT bundles and aggregates {64, Many techniques, such as high power
ultrasonication, surfactant-assisted processing famttionalization of nanotubes, have been
proposed and used to get well dispersed CNTs iynperis [787%279. Xie et al. f*] reviewed the

recent progress made towards the improvement gfedioon of CNTs in polymer matrices.
However, in contrast to the usual idea to disp&@BH, a key issue in producing superior CNT
nanocomposites for thermally conductive applicaticmppears to be the ability to control
aggregation of the CNT in polymeric matrices toamtan interconnecting network suitable for
heat transfer. Indeed, dispersion of CNT into isaaparticles with little or no contact with each
others has been shown to lead to very low effigiefuz thermal conductivity, as discussed in

previous section 3.1.

However, it appears very difficult to provide gealerules for the relationship between the
dispersion of nanotubes and thermal conductivittheir nanocomposites for several reasons. First,
the dispersion of CNT is a relative concept, depahdn the experimental techniques used, as well
as the authors’ interpretation, and little or n@umfitative parameters are used in literature, ngakin
difficult or impossible the comparison between tesueported in different papers. Moreover,
dispersion is often dependent on other parametésstiag thermal conductivity. For example,
dispersion is obviously related to CNT functionatian, but functionalization affects the thermal
conductivity of the CNTs, so that the two effecanigot be studied independently. Similarly,

dispersion depends on the mixing energy imposedniixing energy may also affect the thermal
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conductivity of the CNTSs, by introducing defectglfor shortening.

3.2.1 Effect of Functionalization

Van der Waals interactions between CNTs, resultope-like aggregates or entangled bundles,
depending on their flexibility *]. Dissociation of agglomerated CNTs is usually sued to
maximize material properties including thermal aoctiVity [2'°*’"]. Aggregation is usually
suppressed by ultrasonic treatmet|] Comparison of thermal conductivities of epoxginebased

composites with raw MWCNTs and those treated untteasonication exhibit better dispersion and

higher thermal conductivity for the composites wittsated MWCNTs (Fig. 19¥17.

While untreated aggregates of CNTs are difficultsaparate into dispersed and interconnected
nanotubes, functionalization is usually helpfutitsperse or individualize CNT in polymef8y?%.
Compared with dispersions of MWCNT in epoxy withnétionalized MWCNT (Fig.20), the
dispersion of the unmodified MWCNT resulted in krgusters with dimension of few microns,
while MWCNT-COOH mainly led to individual nanotubew smaller clusters with reduced

entanglementf.

However, conventional acid treatment used to obTaOH groups on CNT may lead to structural
defects of CNT, which is detrimental to thermal doctivity. As an example, the thermal
conductivity obtained in PMMA-based composites aigher for untreated CNTSH]. Indeed,
conductivities of 2.43 and 3.44 Wik were obtained with 1.0 wt.% pristine SWCNTs an@ 4
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wt.% MWCNTSs, respectively, while the correspondimgterials obtained with purified CNTs
showed thermal conductivity of 0.60 and 0.70 WAniFig.21) [283]. It is worth noticing that, to
the best of the authors’ knowledge, these restitaimed by Hong et al presently exhibit the best
performance achieved with CNT nanocomposites, irmteof conductivity/CNT loading.

Unfortunately, the authors did not report charazstion of CNT dispersion in the polymer.

Functionalization of CNT may significantly affechet thermal conductivity properties of
polymer/CNT composite by changing the thermal catidity of CNT, the thermal contact
between adjacent CNTs in a network and the interfila@rmal resistance between CNTs and

polymers, as well as CNT dispersion into a poly(asrdiscussed in 2.4 and 3.1).

3.2.2 Effect of Mixing Conditions

Mixing conditions obviously determines dispersidogether with functionalization discussed
above. The shortening of CNTs under the action igh hshear mixing is usually observed,
especially during melt processing, possibly affegtithe thermal conductivity of the
nanocomposites. As an example, a shortening of MWCbccurred during melt mixing with
polystyrene and the tube length decreased dowrthisdaof the origin length (Fig.22f%]. At the

same time, a better MWCNT dispersion was obtainid wcreasing mixing energy input.

Hong et al. 9 compared the thermal conductivity of poly(dimdtkijoxane) (PDMS)/MWCNT
composites prepared with raw MWCNT and oxidizedterabatched MWCNT. Better dispersion
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and thermal conductivities of composites were olatadiwith the master-batched MWCNT. For
composites using master-batched MWCNT, the thewguoabtuctivity was about 10% higher than

those prepared with raw MWCNT and the aspect tafidimes greater (see Table 3).

As mentioned in section 2.2.2, the thermal conditgtiof CNT has a length dependence that is
more obvious for CNTs with smaller diameter. Howewke composite thermal conductivity was
theoretically predicted to have different depen@ean the CNT length. As a few examples, Xue
[252] predicted an increasing thermal conductiwtth increasing nanotube length, Song and Youn
[?®9 found a limiting value, whereas Bagchi and Nom[280] found a thermal conductivity not
very sensitive to the nanotube length. From a macpoint of view, CNT shortening may be
acceptable to some extent, as this facilitateebditpersion and enhances the thermal conduction.
Xie and Chen?%’] reported a noticeable enhancement of thermal wathdty by controlling the
ball milling time, known for decreasing CNT lendt?’]. Wang et al. 9 reported a mechanical
method to shorten SWCNT for improving dispersiothaut reducing their thermal conductivity
(see Fig.23). Compared with acid oxidized SWCNTchamically shortened samples preserve the
pristine structure of CNT without significant danvag of the graphitic sidewall structure and

shortened SWCNT was found easier to disperse wlfoner matrices.

3.2.3 Localization of Thermally Conductive Paths

In order to increase the thermal contact area letwenductive particles, localization of filler¢an
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well defined co-continuous region can be advantage®@ome techniques reported to build

conductive pathways by localizing CNTs or contrajliaggregation are discussed in this section.

Localized aggregation of CNTs can be realized bijoictal-physics methods using polymer
emulsions or latexes. When combined with nano-siitled, the polymer particles create excluded
volume that leads to a segregated network of filtenay be possible to form a segregated network
of CNTs and enhance thermal conductivity at very tmncentration. For example, semi-crystalline
polyurethane (PU) dispersions were used as a laiskto accommodate MWCNTSs following the
colloidal physics method”}%. The continuous nanotube-rich phase was founthéninterstitial
space among the latex particles. The thermal cdivilycincreased from 0.15 W/t to 0.47

W/mK (i.e., by ~210%) with a MWCNTs content of 3 wt%.

In nanostructured latexes, CNTs are usually firgpersed in agqueous solution driven by sonication
and then mixed with latextY]. Suitable functionalization of CNTs or usage offactants will
favor uniform dispersion of CNT in lateX®f,?*d, but it may also increase the contact thermal
resistance between CNTs and hinder the formatioimtefconnecting network of CNTS%f>7.
Grunlan et al. 39 ascribed the limited improvements of thermal amtivity, approximately 10%
for a CNT contenk 2 vol.%, to the effects of surfactant when prapampoly(vinyl acetate)/CNT
nanocomposites with this approach. Similar reswkse also found in MWCNT/water-based PU
composites4”’]. Even so, the colloidal-physics method appeary ireresting in controlling the

segregation of CNTs and forming interconnectingwoek to obtain thermally conductive
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polymer/CNT composites at low CNT contefif],

Other methods may be also used to obtain contradksgregation of conductive particles. In
particular, co-continuous immiscible polymer bleihdse proved to be an effective method to build
percolation network for electrical conductivit§y’}3°°*%. Co-continuous structures can indeed be
used to build a conductive path in the materidectively dispersersing CNT in one of the phases
[392,3%% Recently, CNT master batches have provided duliseay to build co-continuous

structures, engendering significant reduction iaceical resistivity due to the interconnecting
network of the confined CNTS*Y3%3%. Similar approaches may be useful in principle fo
thermal conductive enhancement of polymer/CNT casitps; however, to the best of our
knowledge, the only attempts at present to obtatsantinues blends with a thermally conductive
phase were reported by Droval et al., using a syadiic polystyrene filled with boron nitride or

aluminum oxide, in combination with an electricalgonductive phase, for electrothermal

applications 1% 3.

Alternatively, impregnation of preformed conductimetworks can be used to prepare composites
with precise control of conductive pathways throubkir volume. For example, Ji et af%]
prepared MWCNT/carbon/polystyrene composites bysitu polymerization of monomer in
preformed MWCNT/C foams, which were preformed ugmotyurethane foam as template and had
a more continuous conductive structure than the QGigiworks formed by free assembly in

composites. The thermal conductivity of compositéth 1 wt.% loading of MWCNT/C foam had
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an enhancement of 37%, and the enhancement indréast55% with a 20 wt.% loading of

MWCNT/C.

3.3 Alignment

Alignment is understood as a preferred orientabdbra tube (in its longitudinal axes) within a
three-dimensional sample which may results in grd¥antage, when thermal conductivity
enhancement is desired in a preferential directsimjlarly to the case of pure CNT network
previously discussed in section 3.1.2. CNTs camllgmed in polymer composites by processing,

CNT arrays or external force.

3.3.1 Alignment During Processing

During melt processing of polymer/CNT composite®yT€ usually tend to align parallel to the
flow direction. Alignment of CNTs during processihgs attracted much interest in reinforcing the

mechanical properties of composite¥°[* 319,

The good dispersion and alignment of the
nanotubes, along with good adhesion with polymees key factors for mechanical property
enhancement. Although alignment of CNTs is usufdlynd to improve mechanical properties in

the alignment direction, its influence on thermahductivity is not clear owing to the complex

factors in forming effective heat transfer network.
Ghose et al. 3 processed EVA/IMWCNT samples with significant aligent, and observed
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thermal conductivity parallel to alignment in aleghsample higher than in the unaligned case (see
Table 4), suggesting successfully heat conductiongaaligned CNTs. Moreover, the addition of
isotropic Al nanofiller reduced the difference imetconduction in the axial and transverse direstion

likely acting as a bridging agent between alignedduictive pathways.

Kim et al. £ associated the alignment of CNTs with the defdiomaapplied during the optimized
milling process. Alignment of 5 wt.%. CNTs in etbgk propylene diene rubber (EPDM) matrix

(0.28 W/mK) resulted in obvious improvements in thermal asettvities (0.70 W/nrK).

3.3.2 Alignment from CNT Array

An anisotropic thermal conductivity of compositaes de expected if all the CNTs embedded in the

matrix are strictly aligned, which can be obtaimeséhg preformed CNT arrays (Fig.24¥7.

Sih et al. %9 used aligned CNTs to enhance the through-thickrtagrmal conductivity in
adhesively bonded joints and obtained a througtkti@ss thermal conductivity of over 250 WKmn
superseding the thermal conductivity of neat adieegiint by several order of magnitudes. Huang
et al. f*] obtained highly thermal conductive silicone etmser/CNT composites by using in situ
injection of polymers into CNT arrays. As shownFig.25, the thermal conductivity of the aligned
composites with only a 0.4 vol.% loading is 116%l &®5% higher than that of pure elastomer
S160 and dispersed composites, respectively. Eehartt of the thermal conductivity (10 to 20
times larger than the polymer matrix) was also regabby Borca-Tasciuc et af'f] for composites

57



prepared by infiltrating poly-dimethyl siloxane (RI3) in aligned MWCNT arrays.

Cola et al. *9 revealed that theoretically the overall performmrof CNT array interfaces was
strongly influenced by the thermal resistance & tntacts between free CNT ends and the
opposing substrate surface (one-sided interfacéleopposing CNT array (two-sided interface).
Lin et al. F?9 reported an in-situ functionalization method bjcrawave curing to improve the
ACNT—epoxy interfaces while maintaining their wallgned structures. Figure 26 shows thermal
conductive results for a thermally cured ACNT—ep@omposite (TCOM), a microwave-cured
ACNT/epoxy composite (MCOM), a thermally cured epdXEP), and a microwave-cured epoxy
(MEP). The much higher thermal conductivity of MCOddggests that the interfacial bonding
between the ACNTs and the epoxy matrix is dramiyidanproved by microwave treatment.
Strong bonding between polymer and CNT by microwianagliation was also obtained by Wang et

al. 4.

3.3.3 Alignment by External Field

Alignment of CNT in nanocomposites can also beizedl by an external field, such as magnetic
[*49, electric F?3°%9 or force fields (stretching process¥?J. However, unlike the electrical
conductivity, the thermal conductivity of compositebtained by alignment under an external field

is seldom reported.

Useful data are reported in the work of Hong ef*4f], who found that the thermal conductivity of

heat transfer nanofluids containing CNTs andCzavas enhanced after alignment by an external
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magnetic field. The reasonable explanation was tiatFeO; particles formed aligned chains
under the applied magnetic field, and helped taechthe nanotubes, which resulted in improved
thermal conductivity. However, clumping of CNTs éblger with magnetic particles during an
extended application of magnetic field would disoect the network. The maximum thermal

conductivity was 0.92 W/K, i.e., 35% higher than the nanofluid without mega field.

Gonnet et al. [265] achieved in-plane SWCNT aligntnender a high magnetic field. However,
similar thermal conductivities were found in thegaéd and perpendicular direction of the epoxy
nanocomposites, even though the magnetically pgaed buckypapers (a preformed nanotube

network or nanotube mat) had a much higher thecmadluctivity along the alignment direction.

3.4 Polymer Crystallization

Since effective phononic conduction requires gedosaly regular and strong bonds, the
crystallinity of macromolecules, i.e., the packioigpolymer chains in crystal lattice structures, is
certainly important for the thermal conductivity ménocomposites. The presence and features of a
crystalline structure are expected to stronglyi@fice heat transfer in both the polymer phaseeat th
interface between CNT and polymer. Furthermoreseimi-crystalline/CNTs composites, CNT can
provide nucleation sites for polymers and accedetia¢ crystal growth rate, as well as modify the
crystal shape. The influences of polymer cryst@alion on the thermal conductivity of

polymer/CNT composites are discussed in this sectio
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CNTs have been shown to alter the crystallizatimetics of semi-crystalline polymers, including
polyolefins [249%%7 32| polyamide [312%%°], poly(vinyl alcohol) [310] and poly(vinylidene

fluoride) **Y, acting as a heteronucleation agent and/or inmgpai nanoconfinement effect. This
strongly affects the rate of crystallization, theystalline fraction and the shape of crystalline

domains, including the formation of peculiar shigbab structures, reviewed elsewhérd.[

A few papers report the influence of polymer crijstidy and its orientation on the thermal
conductivity of polymer/CNT composites. Haggenmerelét al. [251] investigated the thermal
conductivities in nanocomposites of SWCNTs and BEhe degree of PE crystallinity and the PE
alignment. A significant increase in thermal conduty with increasing SWCNT loading in
isotropic SWCNT/PE nanocomposites was found, re@cti.8 and 3.5 W/rK at 20 vol.%
SWCNT in low-density PE (LDPE) and high-density HEDPE), respectively. The increase of
thermal conductivity in SWCNT/HDPE compared to SWIZDNDPE evidenced a strong effect of
polymer crystallinity, possibly explained by a retan of the interfacial thermal resistance when
PE is highly crystalline. As shown in Fig. 27, #ngthors also reported that the thermal conductivity
along the fiber direction increased with increasith@ymans orientation factd¢ for both HDPE
fibers and SWCNT/HDPE compositdsificreases from 0 to 1 with increasing uniaxiag@ent):

as an example, the thermal conductivity increasg@$ much as 150% ds increased from O
(isotropic) to ~0.65. The observed increase in ni@rconductivity with increasing HDPE

orientation for HDPE fibers and SWCNT/HDPE compesiibers with low loadings was
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predominately attributed to the alignment of thePMD Indeed, it is well known that PE can exhibit
a dramatic increase in thermal conductivity witltreasing alignment of polymer chains. The

thermal conductivity of PE can be as high as 340m\/in ultradrawn fibers$4.

The influence of crystallinity on the dispersionM¥WCNTs in PP matrix was investigated by Liao
et al. £*3. High crystallinity PP (HC-PP), medium crystaitinPP (MC-PP), low crystallinity PP
(LC-PP) were used and MWCNTs was found to be biesstedsed better in LC-PP, but thermal
conductivity was not disclosed. The better disgatisy of CNT in low crystallinity PP is likely
related to the amorphous fraction. Indeed, besidebssible nucleation activity induced by CNTSs,
most of the nanotubes are in the amorphous phadeghly filed CNT nanocomposites. In
polymers with relatively large crystalline domaiassd high crystallinity, this may result in CNT
confinement in the amorphous phase, where high €itentration may possibly be exploited to

maximize CNT-CNT thermal contact.

4 Concluding Remarks

As electronic devices tend to become slimmer andenmtegrated, heat management become a
central task for device design and application.il@mimssues are faced in several other applications
including electric motors and generators, heat amghrs in power generation, automotive etc.
Metallic materials are widely used as heat disgpamaterials, but there have been many attempts

to replace the metallic materials with highly thafiy conductive polymer based composites due to
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their lightweight, corrosion resistance, easy pssoeg and lower manufacturing cost.

Thermally conductive polymer based composites angatively prepared by the incorporation of
thermally conductive fillers. The outstanding thatntonductivity of CNTs makes them a
promising candidate to obtain highly thermally cociive polymer based composites. The thermal
conductivity of CNTs themselves depends on theirpiology, chirality, defect, size and impurities.
To obtain well structured, fewer defect, uniform T&\with good thermal conductivity, purification
and graphitization processes are necessary. Evethes@xploitation of CNTs faces a number of
complicating factors: (a) a range of chiralitids) & wide length distribution; (c) various diamster
(d) aggregation or bundles of different diametée$;ends and sidewall defects. These factors result

in diverse thermal conductive properties of CNTd greir composites.

Functionalization of CNTs, which can have a profbgignificance in dispersing CNT in polymeric
matrixes, can be realized by covalent and non-eo¥dlonding. Covalent functionalization suffers
from two potential drawbacks: CNT rupture, causandecrease of aspect ratio and the disturbance
of graphitic structure. By comparison, non-covalgmctionalization typically leads to weakly
bonded functional groups. These features diredfigctthermal conductivity of CNTs, due to
changes in CNT intrinsic conductivity, in termspdfonon mean free path and boundary scattering
effects. These changes, combined with differentridigion and dispersion level obtainable with
different functionalizations, exert complicated lughces on the thermal conductivity of

polymer/CNT nanocomposites. Thus, the reported ntherconductivities of polymer/CNT
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nanocomposites tend to be widely scattered.

The thermal conductivity of CNT-based nanocompssitas often been addressed in a strict
analogy with electrical conductivity. However, ditgant differences apply between thermal and
electrical conductivities, primarily in (i) the CNJolymer conductivity ratio, being several orders
of magnitude lower for the thermal conductivityda) in the phononic vs. electronic conduction
mechanisms. Neglect of these two basic differehessed to a certain disappointment in literature
reports, when obtaining thermal conductivity restitat do not follow the same trend as electrical
conductivity, and being much lower than expectethwthe simple rule of mixtures. However,
previous literature on microcomposites for therm@ahductivity show similar behavior, not often

mentioned in discussions of CNT nanocomposites.

Strict control of the nanostructure and a detaiiedwledge of the physical phenomena for thermal
conduction are needed to take proper advantadeeajutstanding aspect ratio and intrinsic thermal
conductivity of CNTs. Indeed, two fundamental anitical issues associated with obtaining highly
efficient thermal conductive polymer/CNT nanocomfess irrespective of the fabrication method:
the nanotubes should be properly distributed inpthlgmer matrix to form an effective conductive
path, and the thermal resistances at CNT-polymeat/oanat CNT-CNT interfaces must be
minimized. The thermal interface resistance phemanare believed to be the bottleneck for highly
thermally conductive polymer/CNT composites. The Tgdlymer interface resistance can be

tentatively reduced by improving the strength deiactions between filler and matrix; however,
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due to the low thermal conductivity of polymersat&ansfer from CNT to the polymer does not
appear to be an efficient scenario for improvedralVdeat transfer. On the other hand, in principle
it could be more effective to exploit direct corttabetween CNTs. Unfortunately, both the lower
efficiency of thermal contact and low contact angzcally apply to CNT-CNT contacts. Thus, the

quality and quantity of CNTs interconnections appeabe crucial. These may be maximized at
high CNT loadings, with obvious drawbacks relatedcbst and processability. Alternatively,

alignment and strictly controlled segregation of TTRave been experimentally shown to be

beneficial.

Based on the present state of the art reviewed, I@&ds remain one of the most promising
thermally conductive filler type for polymers. Hoves, significant advances are still needed to
obtain thermally conductive composites sufficiendlfficient to meet the requirements of most

market applications.
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Figure Captions

Fig.1 (a) Schematic diagram showing how a hexdgsheet of graphite is “rolled” to form a
CNT, (b) an armchair and (c) a ziz-zag nanotubgriRed with permission from Ref.
[145] (Thostenson ET et al. Compos Sci Technol 2@01 1899-1912, Copyright (2001)

Elsevier).

Fig.2 Thermal conductivities of (20, 0)-open sesar(11, 11)-solid circles, and (10, 13)-open
triangles, nanotubes. Reprinted with permissionmfr®ef. [151] (Zhang W et al.

Nanotechnology 2004; 15: 936-939, Copyright (20@8 Publishing Ltd).

Fig.3 The temperature dependence of the natex/SW/kp for (6,6), (8,8) and (10,10) CNTs
with the vacancy (solid) or SW defect (dash). R&ed with permission from Ref. [168]
(Yamamoto T, Watanabe K. Phys Rev Lett 2006; 965523, Copyright (2006) the

American Physical Society).

Fig.4 Thermal conductivity of (n, 0) SWCNTs (n=@ Xkt 300K. Reprinted with permission from
Ref. [175] (Cao JX et al. Phys Rev B 2004; 69: @/A34Copyright (2004) the American

Physical Society).

Fig.5 Dependence of thermal conductivity on length CNTs for 300K. Reprinted with
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permission from Ref. [177] (Maruyama S. PhysicaOB2, 323: 193-195, Copyright (2002)

Elsevier).

Fig.6 Thermal conductivity versus tube length®fg), (10, 0), (7, 7), (10, 10), (17, 0), (15, ,15)
and (20, 20) SWCNTs at 300 K in a double-logarithstale. Reprinted with permission
from Ref. [178] (Alaghemandi M et al. Nanotechnglog009; 20: 115704, Copyright

(2009) IOP Publishing Ltd).

Fig.7 Raman spectra of pristine (upper) and aededlower) MWCNTs. Reprinted with
permission from Ref. [214] (Kim YA et al. Chem PHystt 2003; 380: 319-324, Copyright

(2003) Elsevier).

Fig.8 CNT thermal conductivity vs. fraction of fttionalized carbon atoms. Reprinted with
permission from Ref. [231] (Shenogin S et al. Apblys Lett 2004; 85(12): 2229-2231,

Copyright (2004) American Institute of Physics).

Fig.9 Overview of literature data on thermal coctdaty enhancement compared with reference
matrix, vs. CNT loading. Attention is driven on &ghmic scale on Y axis, enlarging

differences between low thermal conductivity values

Fig.10 HRTEM of a PE/MWCNT nanocomposite. The MWICN protruding from the side of
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Fig.11

Fig.12

Fig.13

Fig.14

the extrudate and coated with PE. Reprinted witimgsion from Ref. [249] (McNally T

et al. Polymer 2005; 46: 8222-8232, Copyright (2(BSevier).

Effect of the interface thermal resistaoneghe thermal conductivity enhancement in CNT
composites. Ke=effective thermal conductivity, Kriirermal conductivity of the matrix,
Rk= interfacial thermal resistance. Reprinted vpgmmission from Ref. [113] (Nan CW et

al. Appl Phys Lett 2004; 85: 3549-3551, Copyrig?@{4) American Institute of Physics).

Normalised thermal conductivity vs CNT vole fraction, with perfect interface (Rk=0) or
with interfacial thermal resistance (RX. Ke=effective thermal conductivity, Km=
thermal conductivity of the matrix. Reprinted wghrmission from Ref. [113] (Nan CW et

al. Appl Phys Lett 2004; 85: 3549-3551, Copyrig?@@4) American Institute of Physics).

The interfacial thermal resistance, RK, tv& grafting density, for several end-grafted
chain lengths. Reprinted with permission from R256] (Clancy TC, Gates TS. Polymer

2006; 47: 5990-5996, Copyright (2006) Elsevier).

Interfacial resistance in units of equivdlenatrix thickness vs fraction of tube carbon
atoms with covalently attached octane moleculegriRied with permission from Ref.
[231] (Shenogin S et al. Appl Phys Lett 2004; 8%(12229-2231, Copyright (2004)

American Institute of Physics).
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Fig.15

Fig.16

Fig.17

Fig.18

Fig.19

Comparison between percolation model (skotie) and effective medium model (dotted
line). Reprinted with permission from Ref. [251]agbenmueller R et al. Macromolecules

2007; 40: 2417-2421, Copyright (2007) American CirairSociety).

Thermal conductivity of the “thick” annedlsample of aligned SWCNT, measured in the
parallel direction. Effective thickness ofun. Reprinted with permission from Ref. [264]
(Hone J et al. Appl Phys Lett 2000; 77(5): 666-668pyright (2000) American Institute

of Physics).

Thermal conductivities of pristine buckypep and the corresponding composites for
samples with different heat flow and alignment diien. Reprinted with permission from

Ref. [265] (Gonnet P et al. Curr Appl Phys 2006183-1224, Copyright (2005) Elsevier).

2D-scenario for CNT-CNT contact and tempem profile along the contact. The
temperature drop at the interface is the effedhefmal contact resitance. Reprinted with
permission from Ref. [266] (Zhong H, Lukes JR. PRgv B 2006; 74; 125403, Copyright

(2006) the American Physical Society).

Thermal conductivity of nanocomposites wiispect to CNT loading. Reprinted with

permission from Ref. [279] (Song YS, Youn JR. Carl2005; 43: 1378-1385, Copyright
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Fig.20

Fig.21

Fig.22

Fig.23

Fig.24

(2005) Elsevier).

TEM micrographs of 1 wt% CNTs in epoxy nemmposites (a) as-received MWCNT, (b)
MWCNT-COOH. Reprinted with permission from Ref. P8Spitalsky Z et al. Polym

Compos 2009; 30: 1378-1387, Copyright (2008) SgaéPlastics Engineers).

Thermal conductivity of PMMA-based compesiteinforced with (a) unpurified CNTSs, (b)
purified CNTs. Reprinted with permission from R@&83] (Hong WT, Tai NH. Diam Relat

Mater 2008; 17: 1577-1581, Copyright (2008) Elsgvie

MWCNT dispersion and tube length vs mixieigergy in polystyrene. Reprinted with
permission from Ref. [284] (Andrews R et al. MacmrMater Eng 2002; 287: 395-403,

Copyright (2002) WILEY-VCH).

Thermal conductivity of 0.5wt% nanotubegegrated composites. Reprinted with
permission from Ref. [289] (Wang S el al. Carbor02047: 53-57, Copyright (2008)

Elsevier).

(&) SEM image of aligned CNTs on quartzssutbe. (b) Higher magnification image
showing the size and the orientation of CNTs.Réedrwith permission from Ref. [315]

(Shaikh S et al. Carbon 2007; 45: 2608-2613, Cgpy1i2007) Elsevier).
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Fig.25

Fig.26

Fig.27

The enhanced values of thermal conductixstyweight fractions of the CNTs. The inset is
a comparison of measured thermal conductivity \aloedifferent samples. Reprinted
with permission from Ref. [317] (Huang H et al. AMater 2005; 17(13): 1652-1656,

Copyright (2005) WILEY-VCH).

Thermal conductivities of TCOM, MCOM ando&y resin. Reprinted with permission
from Ref. [320] (Lin W et al. Adv Mater 2009; 21:421-2424, Copyright (2009)

WILEY-VCH).

Thermal conductivity of various SWCNT/HDREnocomposites as a function of the PE
chains orientation (fc): (tilted\) isotropic HDPE, ¥) nominally isotropic 0.6 vol.%
SWCNT/HDPE, Q) aligned HDPE fibres,e() aligned 0.6 vol.% SWCNT/HDPE, ana)(
aligned 1.2 vol.% SWCNT/HDPE. Thermal conductigtisvere measured along the
alignment direction. Reprinted with permission frétef. [251] (Haggenmueller R et al.

Macromolecules 2007; 40: 2417-2421, Copyright (3@0vierican Chemical Society).
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