1,049 research outputs found

    Simulation of electric field-assisted nanowire growth from aqueous solutions

    Get PDF
    The present work is aimed at investigating the mechanisms of nanowire growth from aqueous solutions through a physical and chemical modeling. Based on this modeling, deriving an optimized process control is intended. The work considers two methods of nanowire growth. The first is the dielectrophoretic nanowire assembly from neutral molecules or metal clusters. Secondly, in the directed electrochemical nanowire assembly metal-containing ions are reduced in an AC electric field in the vicinity of the nanowire tip and afterwards deposited at the nanowire surface. To describe the transport and growth processes, continuum models are employed. Furthermore, it has been necessary to consider electro-kinetic fluid flows to match the experimental observations. The occurring partial differential equations are solved numerically by means of finite element method (FEM). The effect of the process parameters on the nanowire growth are analyzed by comparing experimental results to a parameter study. The evaluation has yielded that an AC electro-osmotic fluid flow has a major influence on the dielectrophoretic nanowire assembly regarding the growth velocity and morphology. In the case of directed electrochemical nanowire assembly, the nanowire morphology can be controlled by the applied AC signal shape. Based on the nanowire growth model, an optimized AC signal has been designed, whose parametrization allows to adjust to the chemical precursor and the desired nanowire diameter.Ziel der vorliegenden Arbeit ist es, mittels physikalischer und chemischer Modelle die Mechanismen des Nanodrahtwachstums aus wĂ€ssrigen Lösungen zu erforschen und daraus eine optimierte Prozesskontrolle abzuleiten. Dabei werden zwei Verfahren des Nanodrahtwachstums nĂ€her betrachtet: Dies sind die dielektrophoretische Assemblierung von neutralen MolekĂŒlen oder Metallclustern sowie die gerichtete elektrochemische Nanodrahtabscheidung (engl. directed electrochemical nanowire assembly), bei der metallhaltige Ionen im elektrischen Wechselfeld an der Nanodrahtspitze zunĂ€chst reduziert und anschließend als Metallatome abgeschieden werden. Zur Beschreibung der Transport- und Wachstumsprozesse werden Kontinuumsmodelle eingesetzt. DarĂŒber hinaus hat es sich als notwendig erwiesen, elektrokinetische Fluidströmungen zu berĂŒcksichtigen, um die experimentellen Beobachtungen zu reproduzieren. Die auftretenden partiellen Differenzialgleichungen werden mittels der Finiten Elemente Methode (FEM) numerisch gelöst. Die Auswirkungen der Prozessparameter auf das Nanodrahtwachstum werden durch den Vergleich von experimentellen Ergebnissen mit Parameterstudien analysiert. Die Auswertung hat ergeben, dass fĂŒr das dielektrophoretische Wachstum ein durch Wechselfeldelektroosmose (engl. AC electro-osmosis) angetriebener Fluidstrom die Drahtwachstumsgeschwindigkeit und -morphologie maßgeblich beeinflusst. Im Falle der gerichteten elektrochemischen Nanodrahtabscheidung lĂ€sst sich die Drahtmorphologie ĂŒber das angelegte elektrische Wechselsignal steuern. Unter Verwendung des Wachstumsmodells ist ein optimiertes Signal generiert worden, dessen Parametrisierung eine gezielte Anpassung auf den chemischen Ausgangsstoff und den gewĂŒnschten Drahtdurchmesser erlaubt

    Deformation and orientation during shear and elongation of a polycarbonate/carbon nanotubes composite in the melt

    Get PDF
    In this study, we focused on the elongational rheology and the morphology of an electrically conductive polycarbonate/multiwalled carbon nanotubes (2 wt%) composite in the melt. In shear and melt elongation, the influence of the carbon nanotubes was large when the externally applied stress was small. Consequently, the elastic interactions resulting from the carbon nanotubes dominated in the low frequency range of the shear oscillations. The elongational viscosity of the composite was only moderately influenced by the addition of 2wt% carbon nanotubes. Transmission electron microscopy investigations of the stretched composite showed that isolated carbon nanotubes were oriented in elongation. In recovery after melt elongation, the recovered stretch of the composite was much smaller than the recovered stretch of pure polycarbonate. This effect is caused by the carbon nanotubes network, which prohibited large extensions of the macromolecules and led to a yield stress of the composit

    Polyethylene Glycol as Additive to Achieve N-Conductive Melt-Mixed Polymer/Carbon Nanotube Composites for Thermoelectric Application

    Get PDF
    The development of thermoelectric (TE) materials based on thermoplastic polymers and carbon nanotubes is a focus of current TE research activities. For a TE module, both p- and n-conductive composites are required, whereby the production of n-conductive materials is a particular challenge. The present study investigates whether adding polyethylene glycol (PEG) as n-dopant during the melt-mixing of the conductive composites based on polycarbonate, poly(ether ether ketone), or poly(butylene terephthalate) with singlewalled carbon nanotubes (0.5 to 2 wt%) is a possible solution. It was shown that for all three polymer types, a change in the sign of the Seebeck coefficient from positive to negative could be achieved when at least 1.5 wt% PEG was added. The most negative Seebeck coefficients were determined to be −30.1 ”V/K (PC), −44.1 ”V/K (PEEK), and −14.5 ”V/K (PBT). The maximal power factors ranged between 0.0078 ”W/m·K2 (PC), 0.035 ”W/m·K2 (PEEK), and 0.0051 ”W/m·K2 (PBT)

    Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots

    Full text link
    A systematic variation of the exciton fine-structure splitting with quantum dot size in single InAs/GaAs quantum dots grown by metal-organic chemical vapor deposition is observed. The splitting increases from -80 to as much as 520 Ό\mueV with quantum dot size. A change of sign is reported for small quantum dots. Model calculations within the framework of eight-band k.p theory and the configuration interaction method were performed. Different sources for the fine-structure splitting are discussed, and piezoelectricity is pinpointed as the only effect reproducing the observed trend.Comment: 5 pages, 5 figure
    • 

    corecore