577 research outputs found

    Group Theoretical Quantum Tomography

    Get PDF
    The paper is devoted to the mathematical foundation of the quantum tomography using the theory of square-integrable representations of unimodular Lie groups.Comment: 13 pages, no figure, Latex2e. Submitted to J.Math.Phy

    Adaptive Quantum Homodyne Tomography

    Get PDF
    An adaptive optimization technique to improve precision of quantum homodyne tomography is presented. The method is based on the existence of so-called null functions, which have zero average for arbitrary state of radiation. Addition of null functions to the tomographic kernels does not affect their mean values, but changes statistical errors, which can then be reduced by an optimization method that "adapts" kernels to homodyne data. Applications to tomography of the density matrix and other relevant field-observables are studied in detail.Comment: Latex (RevTex class + psfig), 9 Figs, Submitted to PR

    Quantum tomography of mesoscopic superpositions of radiation states

    Get PDF
    We show the feasibility of a tomographic reconstruction of Schr\"{o}dinger cat states generated according to the scheme proposed by S. Song, C.M. Caves and B. Yurke [Phys. Rev. A 41, 5261 (1990)]. We present a technique that tolerates realistic values for quantum efficiency at photodetectors. The measurement can be achieved by a standard experimental setup.Comment: Submitted to Phys. Rev. Lett.; 4 pages including 6 ps figure

    Negative Binomial States of the Radiation Field and their Excitations are Nonlinear Coherent States

    Full text link
    We show that the well-known negative binomial states of the radiation field and their excitations are nonlinear coherent states. Excited nonlinear coherent state are still nonlinear coherent states with different nonlinear functions. We finally give exponential form of the nonlinear coherent states and remark that the binomial states are not nonlinear coherent states.Comment: 10 pages, no figure

    Comment on "Loss-error compensation in quantum-state measurements"

    Get PDF
    In the two papers [T. Kiss, U. Herzog, and U. Leonhardt, Phys. Rev. A 52, 2433 (1995); U. Herzog, Phys. Rev. A 53, 1245 (1996)] with titles similar to the one given above, the authors assert that in some cases it is possible to compensate a quantum efficiency η≤1/2\eta\leq 1/2 in quantum-state measurements, violating the lower bound 1/2 proved in a preceding paper [G. M. D'Ariano, U. Leonhardt and H. Paul, Phys. Rev. A 52, R1801 (1995)]. Here we re-establish the bound as unsurpassable for homodyning any quantum state, and show how the proposed loss-compensation method would always fail in a real measurement outside the allowed η>1/2\eta >1/2 region.Comment: 3 pages, RevTeX, 2 figures included, to appear on Phys. Rev. A (April 1998

    Parameters estimation in quantum optics

    Get PDF
    We address several estimation problems in quantum optics by means of the maximum-likelihood principle. We consider Gaussian state estimation and the determination of the coupling parameters of quadratic Hamiltonians. Moreover, we analyze different schemes of phase-shift estimation. Finally, the absolute estimation of the quantum efficiency of both linear and avalanche photodetectors is studied. In all the considered applications, the Gaussian bound on statistical errors is attained with a few thousand data.Comment: 11 pages. 6 figures. Accepted on Phys. Rev.

    Coherent states, displaced number states and Laguerre polynomial states for su(1,1) Lie algebra

    Get PDF
    The ladder operator formalism of a general quantum state for su(1,1) Lie algebra is obtained. The state bears the generally deformed oscillator algebraic structure. It is found that the Perelomov's coherent state is a su(1,1) nonlinear coherent state. The expansion and the exponential form of the nonlinear coherent state are given. We obtain the matrix elements of the su(1,1) displacement operator in terms of the hypergeometric functions and the expansions of the displaced number states and Laguerre polynomial states are followed. Finally some interesting su(1,1) optical systems are discussed.Comment: 16 pages, no figures, accepted by Int. J. Mod. Phy.

    Minimal disturbance measurement for coherent states is non-Gaussian

    Full text link
    In standard coherent state teleportation with shared two-mode squeezed vacuum (TMSV) state there is a trade-off between the teleportation fidelity and the fidelity of estimation of the teleported state from results of the Bell measurement. Within the class of Gaussian operations this trade-off is optimal, i.e. there is not a Gaussian operation which would give for a given output fidelity a larger estimation fidelity. We show that this trade-off can be improved by up to 2.77% if we use a suitable non-Gaussian operation. This operation can be implemented by the standard teleportation protocol in which the shared TMSV state is replaced with a suitable non-Gaussian entangled state. We also demonstrate that this operation can be used to enhance the transmission fidelity of a certain noisy channel.Comment: submitted to Physical Review A, new results added, 7 pages, 4 figure

    Exploiting quantum parallelism of entanglement for a complete experimental quantum characterization of a single qubit device

    Full text link
    We present the first full experimental quantum tomographic characterization of a single-qubit device achieved with a single entangled input state. The entangled input state plays the role of all possible input states in quantum parallel on the tested device. The method can be trivially extended to any n-qubits device by just replicating the whole experimental setup n times.Comment: 4 pages in revtex4 with 4 eps figure

    Optimal estimation of multiple phases

    Full text link
    We study the issue of simultaneous estimation of several phase shifts induced by commuting operators on a quantum state. We derive the optimal positive operator-valued measure corresponding to the multiple-phase estimation. In particular, we discuss the explicit case of the optimal detection of double phase for a system of identical qutrits and generalise these results to optimal multiple phase detection for d-dimensional quantum states.Comment: 6 page
    • …
    corecore