494 research outputs found

    Reconstruction of some cosmological models in f(R,T) gravity

    Full text link
    In this paper, we reconstruct cosmological models in the framework of f(R,T)f(R,T) gravity, where RR is the Ricci scalar and TT is the trace of the stress-energy tensor. We show that the dust fluid reproduces Λ\Lambda CDM, phantom-non-phantom era and the phantom cosmology. Further, we reconstruct different cosmological models including, Chaplygin gas, scalar field with some specific forms of f(R,T)f(R,T). Our numerical simulation for Hubble parameter shows good agreement with the BAO observational data for low redshifts z<2z<2.Comment: 12 pages, 2 figure

    Collisional Velocities and Rates in Resonant Planetesimal Belts

    Full text link
    We consider a belt of small bodies around a star, captured in one of the external or 1:1 mean-motion resonances with a massive perturber. The objects in the belt collide with each other. Combining methods of celestial mechanics and statistical physics, we calculate mean collisional velocities and collisional rates, averaged over the belt. The results are compared to collisional velocities and rates in a similar, but non-resonant belt, as predicted by the particle-in-a-box method. It is found that the effect of the resonant lock on the velocities is rather small, while on the rates more substantial. The collisional rates between objects in an external resonance are by about a factor of two higher than those in a similar belt of objects not locked in a resonance. For Trojans under the same conditions, the collisional rates may be enhanced by up to an order of magnitude. Our results imply, in particular, shorter collisional lifetimes of resonant Kuiper belt objects in the solar system and higher efficiency of dust production by resonant planetesimals in debris disks around other stars.Comment: 31 pages, 11 figures (some of them heavily compressed to fit into arxiv-maximum filesize), accepted for publication at "Celestial Mechanics and Dynamical Astronomy

    Detection of knee synovitis using non-contrast-enhanced qDESS compared with contrast-enhanced MRI

    Get PDF
    Background: To assess diagnostic accuracy of quantitative double-echo in steady-state (qDESS) MRI for detecting synovitis in knee osteoarthritis (OA). Methods: Patients with different degrees of radiographic knee OA were included prospectively. All underwent MRI with both qDESS and contrast-enhanced T1-weighted magnetic resonance imaging (CE-MRI). A linear combination of the two qDESS images can be used to create an image that displays contrast between synovium and the synovial fluid. Synovitis on both qDESS and CE-MRI was assessed semi-quantitatively, using a whole-knee synovitis sum score, indicating no/equivocal, mild, moderate, and severe synovitis. The correlation between sum scores of qDESS and CE-MRI (reference standard) was determined using Spearman’s rank correlation coefficient and intraclass correlation coefficient for absolute agreement. Receiver operating characteristic analysis was performed to assess the diagnostic performance of qDESS for detecting different degrees of synovitis, with CE-MRI as reference standard. Results: In the 31 patients included, very strong correlation was found between synovitis sum scores on qDESS and CE-MRI (ρ = 0.96, p < 0.001), with high absolute agreement (0.84 (95%CI 0.14–0.95)). Mean sum score (SD) values on qDESS 5.16 (3.75) were lower than on CE-MRI 7.13 (4.66), indicating systematically underestimated synovitis severity on qDESS. For detecting mild synovitis or higher, high sensitivity and specificity were found for qDESS (1.00 (95%CI 0.80–1.00) and 0.909 (0.571–1.00), respectively). For detecting moderate synovitis or higher, sensitivity and specificity were good (0.727 (95%CI 0.393–0.927) and 1.00 (0.800–1.00), respectively). Conclusion: qDESS MRI is able to, however with an underestimation, detect synovitis in patients with knee OA

    Next-generation test of cosmic inflation

    Get PDF
    The increasing precision of cosmological datasets is opening up new opportunities to test predictions from cosmic inflation. Here we study the impact of high precision constraints on the primordial power spectrum and show how a new generation of observations can provide impressive new tests of the slow-roll inflation paradigm, as well as produce significant discriminating power among different slow-roll models. In particular, we consider next-generation measurements of the Cosmic Microwave Background (CMB) temperature anisotropies and (especially) polarization, as well as new Lyman-α\alpha measurements that could become practical in the near future. We emphasize relationships between the slope of the power spectrum and its first derivative that are nearly universal among existing slow-roll inflationary models, and show how these relationships can be tested on several scales with new observations. Among other things, our results give additional motivation for an all-out effort to measure CMB polarization.Comment: 10 pages, 8 figures, to appear in PRD; major changes are a reanalysis in terms of better cosmological parameters and clarifications on the contributions of polarization and Lyman-alpha dat

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic

    The exposure of the hybrid detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic

    The Fluorescence Detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics Research Section

    Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory

    Get PDF
    Data from the Pierre Auger Observatory are analyzed to search for anisotropies near the direction of the Galactic Centre at EeV energies. The exposure of the surface array in this part of the sky is already significantly larger than that of the fore-runner experiments. Our results do not support previous findings of localized excesses in the AGASA and SUGAR data. We set an upper bound on a point-like flux of cosmic rays arriving from the Galactic Centre which excludes several scenarios predicting sources of EeV neutrons from Sagittarius AA. Also the events detected simultaneously by the surface and fluorescence detectors (the `hybrid' data set), which have better pointing accuracy but are less numerous than those of the surface array alone, do not show any significant localized excess from this direction.Comment: Matches published versio

    Shrinking a large dataset to identify variables associated with increased risk of Plasmodium falciparum infection in Western Kenya

    Get PDF
    Large datasets are often not amenable to analysis using traditional single-step approaches. Here, our general objective was to apply imputation techniques, principal component analysis (PCA), elastic net and generalized linear models to a large dataset in a systematic approach to extract the most meaningful predictors for a health outcome. We extracted predictors for Plasmodium falciparum infection, from a large covariate dataset while facing limited numbers of observations, using data from the People, Animals, and their Zoonoses (PAZ) project to demonstrate these techniques: data collected from 415 homesteads in western Kenya, contained over 1500 variables that describe the health, environment, and social factors of the humans, livestock, and the homesteads in which they reside. The wide, sparse dataset was simplified to 42 predictors of P. falciparum malaria infection and wealth rankings were produced for all homesteads. The 42 predictors make biological sense and are supported by previous studies. This systematic data-mining approach we used would make many large datasets more manageable and informative for decision-making processes and health policy prioritization

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.13.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (386+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (6913+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
    corecore