We consider a belt of small bodies around a star, captured in one of the
external or 1:1 mean-motion resonances with a massive perturber. The objects in
the belt collide with each other. Combining methods of celestial mechanics and
statistical physics, we calculate mean collisional velocities and collisional
rates, averaged over the belt. The results are compared to collisional
velocities and rates in a similar, but non-resonant belt, as predicted by the
particle-in-a-box method. It is found that the effect of the resonant lock on
the velocities is rather small, while on the rates more substantial. The
collisional rates between objects in an external resonance are by about a
factor of two higher than those in a similar belt of objects not locked in a
resonance. For Trojans under the same conditions, the collisional rates may be
enhanced by up to an order of magnitude. Our results imply, in particular,
shorter collisional lifetimes of resonant Kuiper belt objects in the solar
system and higher efficiency of dust production by resonant planetesimals in
debris disks around other stars.Comment: 31 pages, 11 figures (some of them heavily compressed to fit into
arxiv-maximum filesize), accepted for publication at "Celestial Mechanics and
Dynamical Astronomy