61 research outputs found

    Using palynology to re-assess the Dead Sea laminated sediments – indeed varves?

    Get PDF
    Lacustrine laminated sediments are often varves representing annual rhythmic deposition. The Dead Sea high-stand laminated sections consist of mm-scale alternating detrital and authigenic aragonite laminae. Previous studies assumed these laminae were varves deposited seasonally. However, this assumption has never been robustly validated. Here we report an examination of the seasonal deposition of detrital-aragonite couplets from two well-known Late Holocene laminated sections at the Ze’elim fan-delta using palynology and grain-size distribution analyses. These analyses are complemented by the study of contemporary flash-flood samples and multivariate statistical analysis. Because transport affects the pollen preservation state, well–preserved (mostly) air-borne transported pollen was analysed separately from badly-preserved pollen and fungal spores, which are more indicative of water transport and reworking from soils. Our results indicate that (i) both detrital and aragonite laminae were deposited during the rainy season; (ii) aragonite laminae have significantly lower reworked and fungal spore concentrations than detrital and flash-flood samples; and (iii) detrital laminae are composed of recycling of local and distal sources, with coarser particles that were initially deposited in the Dead Sea watershed and later transported via run-off to the lake. This is in line with previous carbon balance studies that showed that aragonite precipitation occurs after the massive input of TCO2 associated with run-off episodes. Consequently, at least for the Holocene Ze’elim Formation, laminated sediments cannot be considered as varves. Older Quaternary laminated sequences should be re-evaluated

    Track D Social Science, Human Rights and Political Science

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138414/1/jia218442.pd

    A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing

    Get PDF
    Purpose Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the “ClinVar low-hanging fruit” reanalysis, reasons for the failure of previous analyses, and lessons learned. Methods Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. Results We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). Conclusion The “ClinVar low-hanging fruit” analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock

    Search for charged Higgs bosons in the H±tbH^{\pm} \rightarrow tb decay channel in pppp collisions at s=8\sqrt{s}=8 TeV using the ATLAS detector

    Get PDF
    Charged Higgs bosons heavier than the top quark and decaying via H ± → tb are searched for in proton-proton collisions measured with the ATLAS experiment at √s=8 TeV corresponding to an integrated luminosity of 20.3fb−1. The production of a charged Higgs boson in association with a top quark, gb → tH ±, is explored in the mass range 200 to 600 GeV using multi-jet final states with one electron or muon. In order to separate the signal from the Standard Model background, analysis techniques combining several kinematic variables are employed. An excess of events above the background-only hypothesis is observed across a wide mass range, amounting to up to 2.4 standard deviations. Upper limits are set on the gb → tH ± production cross section times the branching fraction BR(H ± → tb). Additionally, the complementary s-channel production, qq ′ → H ±, is investigated through a reinterpretation of W ′ → tb searches in ATLAS. Final states with one electron or muon are relevant for H ± masses from 0.4 to 2.0 TeV, whereas the all-hadronic final state covers the range 1.5 to 3.0 TeV. In these search channels, no significant excesses from the predictions of the Standard Model are observed, and upper limits are placed on the qq ′ → H ± production cross section times the branching fraction BR(H ± → tb)

    Molecular imprinting science and technology: a survey of the literature for the years 2004-2011

    Full text link

    Links arising from braid monodromy factorizations

    No full text

    Detailed phenotyping and next-generation sequencing for characterization of rare overgrowth syndromes

    No full text
    Weaver syndrome (WS) is a rare overgrowth disorder characterized by tall stature, macrocephaly, advanced bone age, facial dysmorphism, intellectual disability and cancer susceptibility, and it is caused by constitutional mutations in the enhancer of zeste homolog 2 gene (EZH2). To expand our understanding of WS pathogenesis, we assembled a cohort of 66 individuals with Weaver-like features, and collected DNA together with detailed clinical information. Sanger sequencing identified eleven individuals with pathogenic mutations in EZH2 (equivalent to a 17% diagnostic rate). A further seven individuals carried mutations in the nuclear receptor-binding SET domain-containing protein 1 gene (NSD1), which cause a similar overgrowth disorder called Sotos syndrome (11% diagnostic rate). Furthermore, we expanded the phenotypic spectrum of WS to include neuronal migration disorders. EZH2 is a histone methyltransferase that acts as the catalytic agent of the Polycomb Repressive Complex 2 (PRC2) to maintain gene repression via methylation of lysine 27 on histone H3 (H3K27). Functional studies investigating the activity of mutant EZH2 from various cancers showed that both gain- and loss-of-function mechanisms exist, thus it was important to determine which mechanism is causing WS. Using a standard histone methyltransferase assay, we observed that WS-associated EZH2 mutations impair PRC2’s histone methyltransferase activity in vitro, suggesting a loss-of-function mechanism of disease. In addition, no correlation between degree of functional impairment and phenotypic severity was noted. Recognizing a clear role for chromatin modifications in the molecular pathophysiology of overgrowth syndromes, we hypothesized that mutations in other chromatin regulators might explain the phenotype observed in the remaining undiagnosed individuals. Using next-generation sequencing in combination with detailed phenotyping, we identified EED as a novel overgrowth gene. EED happens to be the main partner of EZH2 within PRC2, and is necessary for proper H3K27 methylation to occur. Altogether, we have expanded the phenotypic and mutational spectrums of WS, and begun to uncover the underlying mechanism of disease. We also discovered a novel overgrowth gene, EED, reinforcing a role for PRC2 in the regulation of human growth and development.Medicine, Faculty ofMedical Genetics, Department ofGraduat
    corecore