9 research outputs found

    Physiotherapeutic treatment after break and reconstruction of ACL

    Get PDF
    Injuries of the knee joint are amongst the most common diseases that affect the human body. It is estimated that they affect about 15-30% of all body injuries. Beside the lateral ligaments the most the structure exposed for the any kind of damage is ACL. Concerning the cruciate ligaments, as much as 90% of the injuries are related to ACL [52]. Most often the damage to this structure occurs when practicing sports, both contact (for example basketball, football, martial arts) and non-contact like skiing

    Effect of the Addition of Whole and Milled Flaxseed on the Quality Characteristics of Yogurt

    No full text
    The present study aimed to analyze the effect of the addition of whole and milled flaxseed on the quality characteristics of yogurt. In the first stage of the research, the optimal dose of flaxseed was determined. In the second stage of the research, it was assessed whether the selected qualities of yogurt were affected by the form of flaxseed (whole or milled) and the time of addition (before or after fermentation). The yogurts obtained were stored at 5 °C for 21 days, and the changes in active acidity, apparent viscosity, syneresis, and the number of yogurt bacteria were determined. The results of the second stage of the study were subjected to two-way analysis of variance (ANOVA) (p < 0.05). The study showed that the addition of milled flaxseed to yogurts in the amount of 1% was optimal. Time and form of flaxseed supplementation significantly influenced the changes in active acidity, apparent viscosity, and syneresis in the tested yogurts. The addition of flaxseed did not significantly change the content of yogurt bacteria. The results indicate that to achieve increased apparent viscosity and reduced syneresis, it is more advantageous to use milled flaxseed rather than whole flaxseed

    Research on the Electron Structure and Antimicrobial Properties of Mandelic Acid and Its Alkali Metal Salts

    No full text
    This article investigated the structure, and the spectroscopic and antimicrobial properties of mandelic acid and its alkali metal salts. The electron charge distribution and aromaticity in the analyzed molecules were investigated using molecular spectroscopy methods (FT-IR, FT-Raman, 1H NMR, and 13C NMR) and theoretical calculations (structure, NBO, HOMO, LUMO, energy descriptors, and theoretical IR and NMR spectra). The B3LYP/6-311++G(d,p) method was used in the calculations. The antimicrobial activities of mandelic acid and its salt were tested against six bacteria: Gram-positive Listeria monocytogenes ATCC 13932, Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633, and Loigolactobacillus backii KKP 3566; Gram-negative Escherichia coli ATCC 25922 and Salmonella Typhimurium ATCC 14028, as well as two yeast species, Rhodotorulla mucilaginosa KKP 3560 and Candida albicans ATCC 10231

    Research on the Electron Structure and Antimicrobial Properties of Mandelic Acid and Its Alkali Metal Salts

    No full text
    This article investigated the structure, and the spectroscopic and antimicrobial properties of mandelic acid and its alkali metal salts. The electron charge distribution and aromaticity in the analyzed molecules were investigated using molecular spectroscopy methods (FT-IR, FT-Raman, 1H NMR, and 13C NMR) and theoretical calculations (structure, NBO, HOMO, LUMO, energy descriptors, and theoretical IR and NMR spectra). The B3LYP/6-311++G(d,p) method was used in the calculations. The antimicrobial activities of mandelic acid and its salt were tested against six bacteria: Gram-positive Listeria monocytogenes ATCC 13932, Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633, and Loigolactobacillus backii KKP 3566; Gram-negative Escherichia coli ATCC 25922 and Salmonella Typhimurium ATCC 14028, as well as two yeast species, Rhodotorulla mucilaginosa KKP 3560 and Candida albicans ATCC 10231

    Genomic Analysis and In Vitro Investigation of the Hop Resistance Phenotype of Two Novel Loigolactobacillus backii Strains, Isolated from Spoiled Beer

    No full text
    Loigolactobacillus backii is an important beer-spoiling species, exhibiting high hop tolerance. Here, we present the annotated whole genome sequence of two recently isolated strains, Lg. backii KKP 3565 and KKP 3566. Firstly, to study the genetic basis of the persistence of the two isolates in beer, a comprehensive bioinformatic analysis ensued. Their chromosome map was constructed, using whole-genome sequencing and assembly, revealing that the two strains carry genomes with a length of 2.79 Mb with a GC content of 40.68%. An average nucleotide identity (ANI) analysis demonstrated that the novel strains possess unique genomic sequences, also confirming their classification into the Lg. backii species. Their genome harbors numerous insertion sequences and plasmids, originating from other beer-spoiling species. Regarding their adaptation in brewery environment, homologous genes that confer resistance to hop were spotted, while the impact of hop bitters and pure beer on bacterial growth was investigated, in vitro. In brief, low hop concentrations were found to induce the proliferation of strains, while a higher concentration negatively affected their growth. Nonetheless, their ability to survive in pure beer indicated their tolerance to high hop concentrations. These results offer insight into the capacity of Lg. backii KKP 3566 and Lg. backii KKP 3566 to tolerate the extreme conditions prevalent in the brewery environment

    Depiction of the In Vitro and Genomic Basis of Resistance to Hop and High Hydrostatic Pressure of <i>Lactiplantibacillus plantarum</i> Isolated from Spoiled Beer

    No full text
    Among the beer-spoiling microorganisms, the dominant ones belong to the genera Lactobacillus, Leuconostoc, Oenococcus, and Pediococcus. It is assumed that resistance to hop bitters correlates with resistance to other factors and can significantly impact the brewing industry. Beer preservation with high hydrostatic pressure eliminates the spoiling microorganisms while preserving all desired properties of the beer. Here, we present comprehensive in vitro and genomic analysis of the beer-spoiling Lactiplantibacillus plantarum KKP 3573 capacity to resist hop and high hydrostatic pressure. Lp. plantarum KKP 3573 is a strain isolated from spoiled beer. Our finding suggests that the growth rate of the strain depends on the medium variant, where a small concentration of beer (5 IBU) stimulates the growth, suggesting that the limited concentration has a positive effect on cell growth. At the same time, increased concentrations of 20 IBU, 30 IBU, and pure beer 43.6 IBU decreased the growth rate of the KKP 3573 strain. We observed that higher extract content in the pressurized beer increased microbial survivability. The wort and Vienna Lager beer can stimulate the baroprotective effect. The taxonomy of the novel strain was confirmed after whole genome sequencing (WGS) and comparative genomic analysis. More specifically, it contains a chromosome of 3.3 Mb with a GC content of 44.4%, indicative of the Lp. plantarum species. Accordingly, it possesses high genomic similarity (>98%) with other species members. Annotation algorithms revealed that the strain carries several genes involved in resistance to stress, including extreme temperature, hop bitters and high pressure, and adaptation to the brewing environment. Lastly, the strain does not code for toxins and virulence proteins and cannot produce biogenic amines

    Genomic Analysis and In Vitro Investigation of the Hop Resistance Phenotype of Two Novel <i>Loigolactobacillus backii</i> Strains, Isolated from Spoiled Beer

    No full text
    Loigolactobacillus backii is an important beer-spoiling species, exhibiting high hop tolerance. Here, we present the annotated whole genome sequence of two recently isolated strains, Lg. backii KKP 3565 and KKP 3566. Firstly, to study the genetic basis of the persistence of the two isolates in beer, a comprehensive bioinformatic analysis ensued. Their chromosome map was constructed, using whole-genome sequencing and assembly, revealing that the two strains carry genomes with a length of 2.79 Mb with a GC content of 40.68%. An average nucleotide identity (ANI) analysis demonstrated that the novel strains possess unique genomic sequences, also confirming their classification into the Lg. backii species. Their genome harbors numerous insertion sequences and plasmids, originating from other beer-spoiling species. Regarding their adaptation in brewery environment, homologous genes that confer resistance to hop were spotted, while the impact of hop bitters and pure beer on bacterial growth was investigated, in vitro. In brief, low hop concentrations were found to induce the proliferation of strains, while a higher concentration negatively affected their growth. Nonetheless, their ability to survive in pure beer indicated their tolerance to high hop concentrations. These results offer insight into the capacity of Lg. backii KKP 3566 and Lg. backii KKP 3566 to tolerate the extreme conditions prevalent in the brewery environment

    The mitochondrial permeability transition

    No full text

    Bibliography

    No full text
    corecore