5,008 research outputs found

    Almost sure stability of long cylindrical shells with random imperfections

    Get PDF
    Liapunov method used to obtain sufficient conditions for buckling stability of long cylindrical shells with random imperfection

    Ratcheted molecular-dynamics simulations identify efficiently the transition state of protein folding

    Full text link
    The atomistic characterization of the transition state is a fundamental step to improve the understanding of the folding mechanism and the function of proteins. From a computational point of view, the identification of the conformations that build out the transition state is particularly cumbersome, mainly because of the large computational cost of generating a statistically-sound set of folding trajectories. Here we show that a biasing algorithm, based on the physics of the ratchet-and-pawl, can be used to identify efficiently the transition state. The basic idea is that the algorithmic ratchet exerts a force on the protein when it is climbing the free-energy barrier, while it is inactive when it is descending. The transition state can be identified as the point of the trajectory where the ratchet changes regime. Besides discussing this strategy in general terms, we test it within a protein model whose transition state can be studied independently by plain molecular dynamics simulations. Finally, we show its power in explicit-solvent simulations, obtaining and characterizing a set of transition--state conformations for ACBP and CI2

    ATP binding to a multisubunit enzyme: statistical thermodynamics analysis

    Full text link
    Due to inter-subunit communication, multisubunit enzymes usually hydrolyze ATP in a concerted fashion. However, so far the principle of this process remains poorly understood. In this study, from the viewpoint of statistical thermodynamics, a simple model is presented. In this model, we assume that the binding of ATP will change the potential of the corresponding enzyme subunit, and the degree of this change depends on the state of its adjacent subunits. The probability of enzyme in a given state satisfies the Boltzmann's distribution. Although it looks much simple, this model can fit the recent experimental data of chaperonin TRiC/CCT well. From this model, the dominant state of TRiC/CCT can be obtained. This study provided a new way to understand biophysical processes by statistical thermodynamics analysis

    \u3ci\u3eEditing the Sky\u3c/i\u3e

    Get PDF

    Pathways to folding, nucleation events and native geometry

    Full text link
    We perform extensive Monte Carlo simulations of a lattice model and the Go potential to investigate the existence of folding pathways at the level of contact cluster formation for two native structures with markedly different geometries. Our analysis of folding pathways revealed a common underlying folding mechanism, based on nucleation phenomena, for both protein models. However, folding to the more complex geometry (i.e. that with more non-local contacts) is driven by a folding nucleus whose geometric traits more closely resemble those of the native fold. For this geometry folding is clearly a more cooperative process.Comment: Accepted in J. Chem. Phy

    Protein folding rates correlate with heterogeneity of folding mechanism

    Get PDF
    By observing trends in the folding kinetics of experimental 2-state proteins at their transition midpoints, and by observing trends in the barrier heights of numerous simulations of coarse grained, C-alpha model, Go proteins, we show that folding rates correlate with the degree of heterogeneity in the formation of native contacts. Statistically significant correlations are observed between folding rates and measures of heterogeneity inherent in the native topology, as well as between rates and the variance in the distribution of either experimentally measured or simulated phi-values.Comment: 11 pages, 3 figures, 1 tabl

    Steady-state fluctuations of a genetic feedback loop:an exact solution

    Get PDF
    Genetic feedback loops in cells break detailed balance and involve bimolecular reactions; hence exact solutions revealing the nature of the stochastic fluctuations in these loops are lacking. We here consider the master equation for a gene regulatory feedback loop: a gene produces protein which then binds to the promoter of the same gene and regulates its expression. The protein degrades in its free and bound forms. This network breaks detailed balance and involves a single bimolecular reaction step. We provide an exact solution of the steady-state master equation for arbitrary values of the parameters, and present simplified solutions for a number of special cases. The full parametric dependence of the analytical non-equilibrium steady-state probability distribution is verified by direct numerical solution of the master equations. For the case where the degradation rate of bound and free protein is the same, our solution is at variance with a previous claim of an exact solution (Hornos et al, Phys. Rev. E {\bf 72}, 051907 (2005) and subsequent studies). We show explicitly that this is due to an unphysical formulation of the underlying master equation in those studies.Comment: 31 pages, 3 figures. Accepted for publication in the Journal of Chemical Physics (2012

    Accelerated Sampling of Boltzmann distributions

    Full text link
    The sampling of Boltzmann distributions by stochastic Markov processes, can be strongly limited by the crossing time of high (free) energy barriers. As a result, the system may stay trapped in metastable states, and the relaxation time to the equilibrium Boltzmann distribution may be very large compared to the available computational time. In this paper, we show how, by a simple modification of the Hamiltonian, one can dramatically decrease the relaxation time of the system, while retaining the same equilibrium distribution. The method is illustrated on the case of the one-dimensional double-well potential

    Unstructured intermediate states in single protein force experiments

    Full text link
    Recent single-molecule force measurements on single-domain proteins have highlighted a three-state folding mechanism where a stabilized intermediate state (I) is observed on the folding trajectory between the stretched state and the native state. Here we investigate on-lattice protein-like heteropolymer models that lead to a three-state mechanism and show that force experiments can be useful to determine the structure of I. We have mostly found that I is composed of a core stabilized by a high number of native contacts, plus an unstructured extended chain. The lifetime of I is shown to be sensitive to modifications of the protein that spoil the core. We then propose three types of modifications--point mutations, cuts, and circular permutations--aiming at: (1) confirming the presence of the core and (2) determining its location, within one amino acid accuracy, along the polypeptide chain. We also propose force jump protocols aiming to probe the on/off-pathway nature of I.Comment: 10 page

    Steady-state simulations using weighted ensemble path sampling

    Full text link
    We extend the weighted ensemble (WE) path sampling method to perform rigorous statistical sampling for systems at steady state. The straightforward steady-state implementation of WE is directly practical for simple landscapes, but not when significant metastable intermediates states are present. We therefore develop an enhanced WE scheme, building on existing ideas, which accelerates attainment of steady state in complex systems. We apply both WE approaches to several model systems confirming their correctness and efficiency by comparison with brute-force results. The enhanced version is significantly faster than the brute force and straightforward WE for systems with WE bins that accurately reflect the reaction coordinate(s). The new WE methods can also be applied to equilibrium sampling, since equilibrium is a steady state
    corecore