3,068 research outputs found

    Experimental Statistics in Entomology. F. M. Wadley. Washington, D. C.: Graduate School Press: U.S. Department of Agriculture, 1967. viii, 132 pp. $6.50.

    Get PDF
    Excerpt: This book is intended to help entomological workers who have a real interest, but little training. in applying statistical methods to research problems. The author has proceeded under the false assumption that removal of all mathematical precision and the elimination of the rationale behind statistical techniques results n simplification and clarification. This presents an insoluble dilemma to the statistically uninformed reader

    Coaxial inverted geometry transistor having buried emitter

    Get PDF
    The invention relates to an inverted geometry transistor wherein the emitter is buried within the substrate. The transistor can be fabricated as a part of a monolithic integrated circuit and is particularly suited for use in applications where it is desired to employ low actuating voltages. The transistor may employ the same doping levels in the collector and emitter, so these connections can be reversed

    Children\u27s Books

    Get PDF
    Fiona Raps It Up. Frank Remkiewicz. Lothrop, Lee and Shepard, (1995); Badger\u27s Bring Something Party. Hiawyn Oram. Lothrop, Lee, and Shepard, (1995); Yours Till Banana Splits, The Gator Girls, and My New Kitten. Joanna Cole. William Morrow and Company. (1995); Counting Wildflowers. Bruce McMillan. William Morrow and Company, (1995); Armadillo Rodeo. Jan Brett. G.P. Putnam\u27s Sons, (1995

    Briefer Contributions: Sheriff Tries Crime Prevention, A

    Get PDF

    Color and the Grid

    Get PDF
    None provided

    Maximizing the capability of wireless sensor networks

    Get PDF
    Wireless micro-sensors introduce a new frontier in sensing devices and data acquisition capabilities. These sensors, capable of sensing, processing data, and short-range communication, can be spread over regions to form ad hoc wireless sensor networks (WSN) so as to deliver aggregate information from geographically diverse areas. This aggregate data gathering and processing induces a synergistic effect and enables a sensor network to complete sensing tasks that may never be feasible using a single, perhaps powerful, sensor. This new paradigm in sensing devices is not without many fundamental challenges, one being a constrained energy resource, which first need to be solved before the true capabilities of these networks may be realized. This thesis will discuss the models and techniques developed as an attempt to maximize the capability of a WSN. The premise used in the research is that the capability of a WSN can be maximize by developing a scheme that can duplicate the optimal energy efficient behavior of individual wireless sensors in a contention dominated, distributed decision-making, network environment. This optimal energy efficient behavior as determined by an analytically derived model and a mixed integer programming model will be presented. The analytical model enables the optimal sensor behavior to be calculated given a contention-less environment, and the integer programming model determines the optimal ON/OFF/transmission schedule for each sensor in a contention dominated network, over time. Finally, the optimal behavior found in the two models has been converted into a preliminary heuristic protocol that coordinates sensors in real time. The key aspects of this protocol along with its effectiveness, as compared to the optimal, are also presented

    MeasureIt-ARCH: A Tool for Facilitating Architectural Design in the Open Source Software Blender

    Get PDF
    This thesis discusses the design and synthesis of MeasureIt-ARCH, a GNU GPL licensed software add-on developed by the author in order to add functionality to the Open Source 3D modeling software Blender that facilitates the creation of architectural drawings. MeasureIt-ARCH adds to Blender simple tools to dimension and annotate 3D models, as well as basic support for the definition and drawing of line work. These tools for the creation of dimensions, annotations and line work are designed to be used in tandem with Blender's existing modelling and rendering tool set. While the drawings that MeasureIt-ARCH produces are fundamentally conventional, as are the majority of the techniques that MeasureIt-ARCH employs to create them, MeasureIt-ARCH does provide two simple and relatively novel methods in its drawing systems. MeasureIt-ARCH provides a new method for the placement of dimension elements in 3D space that draws on the dimension's three dimensional context and surrounding geometry order to determine a placement that optimizes legibility. This dimension placement method does not depend on a 2D work plane, a convention that is common in industry standard Computer Aided Design software. MeasureIt-ARCH also implements a new approach for drawing silhouette lines that operates by transforming the silhouetted models geometry in 4D 'Clip Space'. The hope of this work is that MeasureIt-ARCH might be a small step towards creating an Open Source design pipeline for Architects. A step towards creating architectural drawings that can be shared, read, and modified by anyone, within a platform that is itself free to be changed and improved. The creation of MeasureIt-ARCH is motivated by two goals. First, the work aims to create a basic functioning Open Source platform for the creation of architectural drawings within Blender that is publicly and freely available for use. Second, MeasureIt-ARCH's development served as an opportunity to engage in an interdisciplinary act of craft, providing the author an opportunity to explore the act of digital tool making and gain a basic competency in this intersection between Architecture and Computer Science. To achieve these goals, MeasureIt-ARCH's development draws on references from the history of line drawing and dimensioning within Architecture and Computer Science. On the Architectural side, we make use of the history of architectural drawing and dimensioning conventions as described by Mario Carpo, Alberto Pérez Gómez and others, as well as more contemporary frameworks for the classification of architectural software, such as Mark Bew and Mervyn Richard's BIM Levels framework, in order to help determine the scope of MeasureIt-ARCH's feature set. When crafting MeasureIt-ARCH, precedent works from the field of Computer Science that implement methods for producing line drawings from 3D models helped inform the author’s approach to line drawing. In particular this work draws on the overview of line drawing methods produced by Bénard Pierre and Aaron Hertzmann, Arthur Appel's method for line drawing using 'Quantitative Invisibility', the techniques employed in the Freestyle line drawing system created by Grabli et al. as well as other to help inform MeasureIt-ARCH's simple drawing tools. Beyond discussing MeasureIt-ARCH's development and its motivations, this thesis also provides three small speculative discussions about the implications that an Open Source design tool might have on the architectural profession. We investigate MeasureIt-ARCH's use for small scale architectural projects in a practical setting, using it's tool set to produce conceptual design and renovation drawings for cottages at the Lodge at Pine Cove. We provide a demonstration of how MeasureIt-ARCH and Blender can integrate with external systems and other Blender add-ons to produce a proof of concept, dynamic data visualization of the Noosphere installation at the Futurium center in Berlin by the Living Architecture Systems Group. Finally, we discuss the tool's potential to facilitate greater engagement with the Open Source Architecture (OSArc) movement by illustrating a case study of the work done by Alastair Parvin and Clayton Prest on the WikiHouse project, and by highlighting the challenges that face OSArc projects as they try to produce Open Source Architecture without an Open Source design software

    Effects of ionizing radiation on nanomaterials and III-V semiconductor devices.

    Get PDF
    Devices based on III-V semiconductors and nanomaterials are expected to be critical components of future microsystems as the demand for greater functionality, range of application, and robustness continue to increase. There currently is a need for small-scale power supplies which can be used to power microsystems thereby enabling autonomous functionalities. The use of III-V semiconductor-based solid state devices and nanomaterials to convert the radiant energy of a radioisotope source into electricity has been investigated as a viable option to fulfill this demand. The energy imparted to a material by incident alpha-particles, resulting in electron-hole pair formation and ionization, may be converted into usable electrical power by a radioisotope microbattery (RIMB). A model describing the spatially varying rate of ionizing energy deposited in an absorber material held in close proximity to an isotropic alpha-emitting radioisotope source has been developed. The alpha-particle energy deposition model (ADEP) allows the total energy exciting the RIMB devices to be calculated and thereby provides a means to determine the efficiency of the experimentally measured devices. Two RIMB designs are investigated including a direct conversion microbattery based on a nipi-diode structure and an indirect conversion microbattery employing radioluminescent nanophosphors. The multi-functional nature of microsystems may best be exploited by deploying them in extreme environments, such as space, where a low power consumption, small volume, and superior functionality are required. Expanding microsystems into such environments requires a full understanding of the effects that ionizing radiation will have on the optoelectronic properties of the devices and the materials which they are composed of. Irradiating devices with an isotropic alpha-particle flux is a good method for simulating the radiation damage encountered by III-V devices or nanomaterials employed in space. The large mass of alpha particles, in comparison to beta particles, leads to higher momentum transfers in nuclear interactions corresponding to a larger displacement damage dose near the surface of a material for comparably lower fluences. The effects of such irradiation on the optoelectronic properties of III-V semiconductor devices and epitaxially grown InAs quantum dots arrays are investigated. A crystal binding model based on the Tersoff interatomic potentials is developed and used to explain the increased radiation tolerance observed in the InAs quantum dot material system

    Professional Materials

    Get PDF
    Through Writing to Reading, Classroom Strategies for Supporting Literacy. Brigid Smith. (1994
    • …
    corecore