1,731 research outputs found

    Caspase-3 and inhibitor of apoptosis protein(s) interactions in Saccharomyces cerevisiae and mammalian cells

    Get PDF
    AbstractUsing a heterologous yeast expression assay, we show that inhibitor of apoptosis proteins (IAPs) suppress caspase-3-mediated cytotoxicity in the order of XIAP>c-IAP2>c-IAP1>survivin. The same ordering of IAP activities was demonstrated in mammalian cells expressing an auto-activating caspase-3. The relative anti-apoptotic activities of each IAP depended on the particular death stimulus. For IAP-expressing cells treated with camptothecin, survival correlated with their intrinsic anti-caspase-3 activity. However, c-IAP1-transfected cells were disproportionately resistant to tumor necrosis factor-α, suggesting that its anti-apoptotic activities extend beyond caspase-3 or -7 inhibition. Yeast-based caspase assays provide rapid, reliable information on specificity and activity of the IAPs and aid in identifying critical targets in mammalian apoptotic pathways

    Comparative analysis of the toxicity of gold nanoparticles in zebrafish

    Get PDF
    The use of nanoparticles - particles that range in size from 1 to 100 nanometres - has become increasingly prevalent in recent years, bringing with it a variety of potential toxic effects. Zebrafish embryos were exposed during the 3-day post-fertilisation period to gold nanospheres (GSSs), gold nanorods (GNRs), gold nanorods coated with polystyrene-sulfate (PSS-GNRs), and gold nanorods coated with both polystyrene-sulfate and polyallamine hydrochloride (PAH/PSS-GNRs). All nanorods were stabilised with cetyltrimethylammonium bromide (CTAB). GNSs were the least toxic of the nanoparticles studied, with exposure resulting in no significant changes in mortality, hatching or heart rate. Exposure to GNRs and PSS-GNRs resulted in significant increases in mortality and significant decreases in hatching and heart rate. Treatment with GNRs caused significant changes in the expression of a variety of oxidative stress genes. The toxic effects of GNRs were ameliorated by coating them with polystyrene-sulfate and, to a more marked extent, with a double coating of polystyrene-sulfate and polyallamine hydrochloride

    Suppression of p53 function in normal human mammary epithelial cells increases sensitivity to extracellular matrix–induced apoptosis

    Get PDF
    Little is known about the fate of normal human mammary epithelial cells (HMECs) that lose p53 function in the context of extracellular matrix (ECM)–derived growth and polarity signals. Retrovirally mediated expression of human papillomavirus type 16 (HPV-16) E6 and antisense oligodeoxynucleotides (ODNs) were used to suppress p53 function in HMECs as a model of early breast cancer. p53+ HMEC vector controls grew exponentially in reconstituted ECM (rECM) until day 6 and then underwent growth arrest on day 7. Ultrastructural examination of day 7 vector controls revealed acinus-like structures characteristic of normal mammary epithelium. In contrast, early passage p53− HMEC cells proliferated in rECM until day 6 but then underwent apoptosis on day 7. p53− HMEC-E6 passaged in non-rECM culture rapidly (8–10 passages), lost sensitivity to both rECM-induced growth arrest and polarity, and also developed resistance to rECM-induced apoptosis. Resistance was associated with altered expression of α3-integrin. Treatment of early passage p53− HMEC-E6 cells with either α3- or β1-integrin function-blocking antibodies inhibited rECM-mediated growth arrest and induction of apoptosis. Our results indicate that suppression of p53 expression in HMECs by HPV-16 E6 and ODNs may sensitize cells to rECM-induced apoptosis and suggest a role for the α3/β1-heterodimer in mediating apoptosis in HMECs grown in contact with rECM

    AT-101 ( R -(−)-gossypol acetic acid) enhances the effectiveness of androgen deprivation therapy in the VCaP prostate cancer model

    Full text link
    Prostate cancer remains a leading cause of cancer death in American men. Androgen deprivation therapy (ADT) is the most common treatment for advanced prostate cancer patients; however, ADT fails in nearly all cases resulting in castration resistant or androgen-insensitive (AI) disease. In many cases, this progression results from dysregulation of the pro-survival Bcl-2 family proteins. Inhibition of pro-survival Bcl-2 family proteins, therefore, may be an effective strategy to delay the onset of AI disease. Gossypol, a small molecule inhibitor of pro-survival Bcl-2 family proteins, has been demonstrated to inhibit AI prostate cancer growth. The apoptotic effect of gossypol, however, has been demonstrated to be attenuated by the presence of androgen in a prostate cancer xenograft mouse model (Vertebral Cancer of Prostate [VCaP]) treated with AT-101 ( R -(−)-gossypol acetic acid). This study was undertaken to better understand the in vitro effects of androgen receptor (AR) on AT-101-induced apoptosis. VCaP cells treated with AT-101 demonstrated an increase in apoptosis and downregulation of Bcl-2 pro-survival proteins. Upon AR activation in combination with AT-101 treatment, apoptosis is reduced, cell survival increases, and caspase activation is attenuated. Akt and X inhibitor of apoptosis (XIAP) are downregulated in the presence of AT-101, and AR stimulation rescues protein expression. Combination treatment of bicalutamide and AT-101 increases apoptosis by reducing the expression of these pro-survival proteins. These data suggest that combination therapy of AT-101 and ADT may further delay the onset of AI disease, resulting in prolonged progression-free survival of prostate cancer patients. J. Cell. Biochem. 110: 1187–1194, 2010. Published 2010 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77515/1/22633_ftp.pd

    Cysteine and Folate metabolism are targetable vulnerabilities of metastatic colorectal cancer

    Get PDF
    With most cancer-related deaths resulting from metastasis, the development of new therapeutic approaches against metastatic colorectal cancer (mCRC) is essential to increasing patient survival. The metabolic adaptations that support mCRC remain undefined and their elucidation is crucial to identify potential therapeutic targets. Here, we employed a strategy for the rational identification of targetable metabolic vulnerabilities. This strategy involved first a thorough metabolic characterisation of same-patient-derived cell lines from primary colon adenocarcinoma (SW480), its lymph node metastasis (SW620) and a liver metastatic derivative (SW620-LiM2), and second, using a novel multi-omics integration workflow, identification of metabolic vulnerabilities specific to the metastatic cell lines. We discovered that the metastatic cell lines are selectively vulnerable to the inhibition of cystine import and folate metabolism, two key pathways in redox homeostasis. Specifically, we identified the system xCT and MTHFD1 genes as potential therapeutic targets, both individually and combined, for combating mCRC
    • …
    corecore